x uchun yechish
x=2\sqrt{5}+2\approx 6,472135955
x=2-2\sqrt{5}\approx -2,472135955
Grafik
Baham ko'rish
Klipbordga nusxa olish
16+x^{2}+16-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4-x\right)^{2} kengaytirilishi uchun ishlating.
32+x^{2}-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
32 olish uchun 16 va 16'ni qo'shing.
32+2x^{2}-8x+16=\left(4\sqrt{5}\right)^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
48+2x^{2}-8x=\left(4\sqrt{5}\right)^{2}
48 olish uchun 32 va 16'ni qo'shing.
48+2x^{2}-8x=4^{2}\left(\sqrt{5}\right)^{2}
\left(4\sqrt{5}\right)^{2} ni kengaytirish.
48+2x^{2}-8x=16\left(\sqrt{5}\right)^{2}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
48+2x^{2}-8x=16\times 5
\sqrt{5} kvadrati – 5.
48+2x^{2}-8x=80
80 hosil qilish uchun 16 va 5 ni ko'paytirish.
48+2x^{2}-8x-80=0
Ikkala tarafdan 80 ni ayirish.
-32+2x^{2}-8x=0
-32 olish uchun 48 dan 80 ni ayirish.
2x^{2}-8x-32=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-32\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -8 ni b va -32 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-32\right)}}{2\times 2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-32\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64+256}}{2\times 2}
-8 ni -32 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{320}}{2\times 2}
64 ni 256 ga qo'shish.
x=\frac{-\left(-8\right)±8\sqrt{5}}{2\times 2}
320 ning kvadrat ildizini chiqarish.
x=\frac{8±8\sqrt{5}}{2\times 2}
-8 ning teskarisi 8 ga teng.
x=\frac{8±8\sqrt{5}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8\sqrt{5}+8}{4}
x=\frac{8±8\sqrt{5}}{4} tenglamasini yeching, bunda ± musbat. 8 ni 8\sqrt{5} ga qo'shish.
x=2\sqrt{5}+2
8+8\sqrt{5} ni 4 ga bo'lish.
x=\frac{8-8\sqrt{5}}{4}
x=\frac{8±8\sqrt{5}}{4} tenglamasini yeching, bunda ± manfiy. 8 dan 8\sqrt{5} ni ayirish.
x=2-2\sqrt{5}
8-8\sqrt{5} ni 4 ga bo'lish.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
Tenglama yechildi.
16+x^{2}+16-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4-x\right)^{2} kengaytirilishi uchun ishlating.
32+x^{2}-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
32 olish uchun 16 va 16'ni qo'shing.
32+2x^{2}-8x+16=\left(4\sqrt{5}\right)^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
48+2x^{2}-8x=\left(4\sqrt{5}\right)^{2}
48 olish uchun 32 va 16'ni qo'shing.
48+2x^{2}-8x=4^{2}\left(\sqrt{5}\right)^{2}
\left(4\sqrt{5}\right)^{2} ni kengaytirish.
48+2x^{2}-8x=16\left(\sqrt{5}\right)^{2}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
48+2x^{2}-8x=16\times 5
\sqrt{5} kvadrati – 5.
48+2x^{2}-8x=80
80 hosil qilish uchun 16 va 5 ni ko'paytirish.
2x^{2}-8x=80-48
Ikkala tarafdan 48 ni ayirish.
2x^{2}-8x=32
32 olish uchun 80 dan 48 ni ayirish.
\frac{2x^{2}-8x}{2}=\frac{32}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{32}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-4x=\frac{32}{2}
-8 ni 2 ga bo'lish.
x^{2}-4x=16
32 ni 2 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=16+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=16+4
-2 kvadratini chiqarish.
x^{2}-4x+4=20
16 ni 4 ga qo'shish.
\left(x-2\right)^{2}=20
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{20}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=2\sqrt{5} x-2=-2\sqrt{5}
Qisqartirish.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}