x uchun yechish (complex solution)
x=2+\frac{1}{4}i=2+0,25i
x=2-\frac{1}{4}i=2-0,25i
Grafik
Baham ko'rish
Klipbordga nusxa olish
16x^{2}-64x+65=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 16\times 65}}{2\times 16}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 16 ni a, -64 ni b va 65 ni c bilan almashtiring.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 16\times 65}}{2\times 16}
-64 kvadratini chiqarish.
x=\frac{-\left(-64\right)±\sqrt{4096-64\times 65}}{2\times 16}
-4 ni 16 marotabaga ko'paytirish.
x=\frac{-\left(-64\right)±\sqrt{4096-4160}}{2\times 16}
-64 ni 65 marotabaga ko'paytirish.
x=\frac{-\left(-64\right)±\sqrt{-64}}{2\times 16}
4096 ni -4160 ga qo'shish.
x=\frac{-\left(-64\right)±8i}{2\times 16}
-64 ning kvadrat ildizini chiqarish.
x=\frac{64±8i}{2\times 16}
-64 ning teskarisi 64 ga teng.
x=\frac{64±8i}{32}
2 ni 16 marotabaga ko'paytirish.
x=\frac{64+8i}{32}
x=\frac{64±8i}{32} tenglamasini yeching, bunda ± musbat. 64 ni 8i ga qo'shish.
x=2+\frac{1}{4}i
64+8i ni 32 ga bo'lish.
x=\frac{64-8i}{32}
x=\frac{64±8i}{32} tenglamasini yeching, bunda ± manfiy. 64 dan 8i ni ayirish.
x=2-\frac{1}{4}i
64-8i ni 32 ga bo'lish.
x=2+\frac{1}{4}i x=2-\frac{1}{4}i
Tenglama yechildi.
16x^{2}-64x+65=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
16x^{2}-64x+65-65=-65
Tenglamaning ikkala tarafidan 65 ni ayirish.
16x^{2}-64x=-65
O‘zidan 65 ayirilsa 0 qoladi.
\frac{16x^{2}-64x}{16}=-\frac{65}{16}
Ikki tarafini 16 ga bo‘ling.
x^{2}+\left(-\frac{64}{16}\right)x=-\frac{65}{16}
16 ga bo'lish 16 ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{65}{16}
-64 ni 16 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=-\frac{65}{16}+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-\frac{65}{16}+4
-2 kvadratini chiqarish.
x^{2}-4x+4=-\frac{1}{16}
-\frac{65}{16} ni 4 ga qo'shish.
\left(x-2\right)^{2}=-\frac{1}{16}
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\frac{1}{4}i x-2=-\frac{1}{4}i
Qisqartirish.
x=2+\frac{1}{4}i x=2-\frac{1}{4}i
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}