Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\frac{49}{16}
Ikki tarafini 16 ga bo‘ling.
x^{2}-\frac{49}{16}=0
Ikkala tarafdan \frac{49}{16} ni ayirish.
16x^{2}-49=0
Ikkala tarafini 16 ga ko‘paytiring.
\left(4x-7\right)\left(4x+7\right)=0
Hisoblang: 16x^{2}-49. 16x^{2}-49 ni \left(4x\right)^{2}-7^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{7}{4} x=-\frac{7}{4}
Tenglamani yechish uchun 4x-7=0 va 4x+7=0 ni yeching.
x^{2}=\frac{49}{16}
Ikki tarafini 16 ga bo‘ling.
x=\frac{7}{4} x=-\frac{7}{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=\frac{49}{16}
Ikki tarafini 16 ga bo‘ling.
x^{2}-\frac{49}{16}=0
Ikkala tarafdan \frac{49}{16} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{49}{16}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{49}{16} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{49}{16}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\frac{49}{4}}}{2}
-4 ni -\frac{49}{16} marotabaga ko'paytirish.
x=\frac{0±\frac{7}{2}}{2}
\frac{49}{4} ning kvadrat ildizini chiqarish.
x=\frac{7}{4}
x=\frac{0±\frac{7}{2}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{7}{4}
x=\frac{0±\frac{7}{2}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{7}{4} x=-\frac{7}{4}
Tenglama yechildi.