Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

k^{2}-9=0
Ikki tarafini 16 ga bo‘ling.
\left(k-3\right)\left(k+3\right)=0
Hisoblang: k^{2}-9. k^{2}-9 ni k^{2}-3^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=3 k=-3
Tenglamani yechish uchun k-3=0 va k+3=0 ni yeching.
16k^{2}=144
144 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
k^{2}=\frac{144}{16}
Ikki tarafini 16 ga bo‘ling.
k^{2}=9
9 ni olish uchun 144 ni 16 ga bo‘ling.
k=3 k=-3
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
16k^{2}-144=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 16\left(-144\right)}}{2\times 16}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 16 ni a, 0 ni b va -144 ni c bilan almashtiring.
k=\frac{0±\sqrt{-4\times 16\left(-144\right)}}{2\times 16}
0 kvadratini chiqarish.
k=\frac{0±\sqrt{-64\left(-144\right)}}{2\times 16}
-4 ni 16 marotabaga ko'paytirish.
k=\frac{0±\sqrt{9216}}{2\times 16}
-64 ni -144 marotabaga ko'paytirish.
k=\frac{0±96}{2\times 16}
9216 ning kvadrat ildizini chiqarish.
k=\frac{0±96}{32}
2 ni 16 marotabaga ko'paytirish.
k=3
k=\frac{0±96}{32} tenglamasini yeching, bunda ± musbat. 96 ni 32 ga bo'lish.
k=-3
k=\frac{0±96}{32} tenglamasini yeching, bunda ± manfiy. -96 ni 32 ga bo'lish.
k=3 k=-3
Tenglama yechildi.