Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\frac{100}{15625}
Ikki tarafini 15625 ga bo‘ling.
x^{2}=\frac{4}{625}
\frac{100}{15625} ulushini 25 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{4}{625}=0
Ikkala tarafdan \frac{4}{625} ni ayirish.
625x^{2}-4=0
Ikkala tarafini 625 ga ko‘paytiring.
\left(25x-2\right)\left(25x+2\right)=0
Hisoblang: 625x^{2}-4. 625x^{2}-4 ni \left(25x\right)^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{25} x=-\frac{2}{25}
Tenglamani yechish uchun 25x-2=0 va 25x+2=0 ni yeching.
x^{2}=\frac{100}{15625}
Ikki tarafini 15625 ga bo‘ling.
x^{2}=\frac{4}{625}
\frac{100}{15625} ulushini 25 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{2}{25} x=-\frac{2}{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=\frac{100}{15625}
Ikki tarafini 15625 ga bo‘ling.
x^{2}=\frac{4}{625}
\frac{100}{15625} ulushini 25 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{4}{625}=0
Ikkala tarafdan \frac{4}{625} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{625}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{4}{625} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{4}{625}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\frac{16}{625}}}{2}
-4 ni -\frac{4}{625} marotabaga ko'paytirish.
x=\frac{0±\frac{4}{25}}{2}
\frac{16}{625} ning kvadrat ildizini chiqarish.
x=\frac{2}{25}
x=\frac{0±\frac{4}{25}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{2}{25}
x=\frac{0±\frac{4}{25}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{2}{25} x=-\frac{2}{25}
Tenglama yechildi.