Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1530x^{2}-30x-470=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 1530\left(-470\right)}}{2\times 1530}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1530 ni a, -30 ni b va -470 ni c bilan almashtiring.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 1530\left(-470\right)}}{2\times 1530}
-30 kvadratini chiqarish.
x=\frac{-\left(-30\right)±\sqrt{900-6120\left(-470\right)}}{2\times 1530}
-4 ni 1530 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{900+2876400}}{2\times 1530}
-6120 ni -470 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{2877300}}{2\times 1530}
900 ni 2876400 ga qo'shish.
x=\frac{-\left(-30\right)±30\sqrt{3197}}{2\times 1530}
2877300 ning kvadrat ildizini chiqarish.
x=\frac{30±30\sqrt{3197}}{2\times 1530}
-30 ning teskarisi 30 ga teng.
x=\frac{30±30\sqrt{3197}}{3060}
2 ni 1530 marotabaga ko'paytirish.
x=\frac{30\sqrt{3197}+30}{3060}
x=\frac{30±30\sqrt{3197}}{3060} tenglamasini yeching, bunda ± musbat. 30 ni 30\sqrt{3197} ga qo'shish.
x=\frac{\sqrt{3197}+1}{102}
30+30\sqrt{3197} ni 3060 ga bo'lish.
x=\frac{30-30\sqrt{3197}}{3060}
x=\frac{30±30\sqrt{3197}}{3060} tenglamasini yeching, bunda ± manfiy. 30 dan 30\sqrt{3197} ni ayirish.
x=\frac{1-\sqrt{3197}}{102}
30-30\sqrt{3197} ni 3060 ga bo'lish.
x=\frac{\sqrt{3197}+1}{102} x=\frac{1-\sqrt{3197}}{102}
Tenglama yechildi.
1530x^{2}-30x-470=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
1530x^{2}-30x-470-\left(-470\right)=-\left(-470\right)
470 ni tenglamaning ikkala tarafiga qo'shish.
1530x^{2}-30x=-\left(-470\right)
O‘zidan -470 ayirilsa 0 qoladi.
1530x^{2}-30x=470
0 dan -470 ni ayirish.
\frac{1530x^{2}-30x}{1530}=\frac{470}{1530}
Ikki tarafini 1530 ga bo‘ling.
x^{2}+\left(-\frac{30}{1530}\right)x=\frac{470}{1530}
1530 ga bo'lish 1530 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{51}x=\frac{470}{1530}
\frac{-30}{1530} ulushini 30 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{51}x=\frac{47}{153}
\frac{470}{1530} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{51}x+\left(-\frac{1}{102}\right)^{2}=\frac{47}{153}+\left(-\frac{1}{102}\right)^{2}
-\frac{1}{51} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{102} olish uchun. Keyin, -\frac{1}{102} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{51}x+\frac{1}{10404}=\frac{47}{153}+\frac{1}{10404}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{102} kvadratini chiqarish.
x^{2}-\frac{1}{51}x+\frac{1}{10404}=\frac{3197}{10404}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{47}{153} ni \frac{1}{10404} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{102}\right)^{2}=\frac{3197}{10404}
x^{2}-\frac{1}{51}x+\frac{1}{10404} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{102}\right)^{2}}=\sqrt{\frac{3197}{10404}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{102}=\frac{\sqrt{3197}}{102} x-\frac{1}{102}=-\frac{\sqrt{3197}}{102}
Qisqartirish.
x=\frac{\sqrt{3197}+1}{102} x=\frac{1-\sqrt{3197}}{102}
\frac{1}{102} ni tenglamaning ikkala tarafiga qo'shish.