x uchun yechish
x=50
x=100
Grafik
Baham ko'rish
Klipbordga nusxa olish
150x-x^{2}=\left(1-0\right)\times 100\times 50
0 hosil qilish uchun 0 va 8832 ni ko'paytirish.
150x-x^{2}=1\times 100\times 50
1 olish uchun 1 dan 0 ni ayirish.
150x-x^{2}=100\times 50
100 hosil qilish uchun 1 va 100 ni ko'paytirish.
150x-x^{2}=5000
5000 hosil qilish uchun 100 va 50 ni ko'paytirish.
150x-x^{2}-5000=0
Ikkala tarafdan 5000 ni ayirish.
-x^{2}+150x-5000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-150±\sqrt{150^{2}-4\left(-1\right)\left(-5000\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 150 ni b va -5000 ni c bilan almashtiring.
x=\frac{-150±\sqrt{22500-4\left(-1\right)\left(-5000\right)}}{2\left(-1\right)}
150 kvadratini chiqarish.
x=\frac{-150±\sqrt{22500+4\left(-5000\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-150±\sqrt{22500-20000}}{2\left(-1\right)}
4 ni -5000 marotabaga ko'paytirish.
x=\frac{-150±\sqrt{2500}}{2\left(-1\right)}
22500 ni -20000 ga qo'shish.
x=\frac{-150±50}{2\left(-1\right)}
2500 ning kvadrat ildizini chiqarish.
x=\frac{-150±50}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\frac{100}{-2}
x=\frac{-150±50}{-2} tenglamasini yeching, bunda ± musbat. -150 ni 50 ga qo'shish.
x=50
-100 ni -2 ga bo'lish.
x=-\frac{200}{-2}
x=\frac{-150±50}{-2} tenglamasini yeching, bunda ± manfiy. -150 dan 50 ni ayirish.
x=100
-200 ni -2 ga bo'lish.
x=50 x=100
Tenglama yechildi.
150x-x^{2}=\left(1-0\right)\times 100\times 50
0 hosil qilish uchun 0 va 8832 ni ko'paytirish.
150x-x^{2}=1\times 100\times 50
1 olish uchun 1 dan 0 ni ayirish.
150x-x^{2}=100\times 50
100 hosil qilish uchun 1 va 100 ni ko'paytirish.
150x-x^{2}=5000
5000 hosil qilish uchun 100 va 50 ni ko'paytirish.
-x^{2}+150x=5000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+150x}{-1}=\frac{5000}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{150}{-1}x=\frac{5000}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-150x=\frac{5000}{-1}
150 ni -1 ga bo'lish.
x^{2}-150x=-5000
5000 ni -1 ga bo'lish.
x^{2}-150x+\left(-75\right)^{2}=-5000+\left(-75\right)^{2}
-150 ni bo‘lish, x shartining koeffitsienti, 2 ga -75 olish uchun. Keyin, -75 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-150x+5625=-5000+5625
-75 kvadratini chiqarish.
x^{2}-150x+5625=625
-5000 ni 5625 ga qo'shish.
\left(x-75\right)^{2}=625
x^{2}-150x+5625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-75\right)^{2}}=\sqrt{625}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-75=25 x-75=-25
Qisqartirish.
x=100 x=50
75 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}