x uchun yechish
x = \frac{5 \sqrt{97} + 35}{2} \approx 42,122144504
x=\frac{35-5\sqrt{97}}{2}\approx -7,122144504
Grafik
Baham ko'rish
Klipbordga nusxa olish
15x^{2}-525x-4500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-525\right)±\sqrt{\left(-525\right)^{2}-4\times 15\left(-4500\right)}}{2\times 15}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 15 ni a, -525 ni b va -4500 ni c bilan almashtiring.
x=\frac{-\left(-525\right)±\sqrt{275625-4\times 15\left(-4500\right)}}{2\times 15}
-525 kvadratini chiqarish.
x=\frac{-\left(-525\right)±\sqrt{275625-60\left(-4500\right)}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
x=\frac{-\left(-525\right)±\sqrt{275625+270000}}{2\times 15}
-60 ni -4500 marotabaga ko'paytirish.
x=\frac{-\left(-525\right)±\sqrt{545625}}{2\times 15}
275625 ni 270000 ga qo'shish.
x=\frac{-\left(-525\right)±75\sqrt{97}}{2\times 15}
545625 ning kvadrat ildizini chiqarish.
x=\frac{525±75\sqrt{97}}{2\times 15}
-525 ning teskarisi 525 ga teng.
x=\frac{525±75\sqrt{97}}{30}
2 ni 15 marotabaga ko'paytirish.
x=\frac{75\sqrt{97}+525}{30}
x=\frac{525±75\sqrt{97}}{30} tenglamasini yeching, bunda ± musbat. 525 ni 75\sqrt{97} ga qo'shish.
x=\frac{5\sqrt{97}+35}{2}
525+75\sqrt{97} ni 30 ga bo'lish.
x=\frac{525-75\sqrt{97}}{30}
x=\frac{525±75\sqrt{97}}{30} tenglamasini yeching, bunda ± manfiy. 525 dan 75\sqrt{97} ni ayirish.
x=\frac{35-5\sqrt{97}}{2}
525-75\sqrt{97} ni 30 ga bo'lish.
x=\frac{5\sqrt{97}+35}{2} x=\frac{35-5\sqrt{97}}{2}
Tenglama yechildi.
15x^{2}-525x-4500=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
15x^{2}-525x-4500-\left(-4500\right)=-\left(-4500\right)
4500 ni tenglamaning ikkala tarafiga qo'shish.
15x^{2}-525x=-\left(-4500\right)
O‘zidan -4500 ayirilsa 0 qoladi.
15x^{2}-525x=4500
0 dan -4500 ni ayirish.
\frac{15x^{2}-525x}{15}=\frac{4500}{15}
Ikki tarafini 15 ga bo‘ling.
x^{2}+\left(-\frac{525}{15}\right)x=\frac{4500}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
x^{2}-35x=\frac{4500}{15}
-525 ni 15 ga bo'lish.
x^{2}-35x=300
4500 ni 15 ga bo'lish.
x^{2}-35x+\left(-\frac{35}{2}\right)^{2}=300+\left(-\frac{35}{2}\right)^{2}
-35 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{35}{2} olish uchun. Keyin, -\frac{35}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-35x+\frac{1225}{4}=300+\frac{1225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{35}{2} kvadratini chiqarish.
x^{2}-35x+\frac{1225}{4}=\frac{2425}{4}
300 ni \frac{1225}{4} ga qo'shish.
\left(x-\frac{35}{2}\right)^{2}=\frac{2425}{4}
x^{2}-35x+\frac{1225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{35}{2}\right)^{2}}=\sqrt{\frac{2425}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{35}{2}=\frac{5\sqrt{97}}{2} x-\frac{35}{2}=-\frac{5\sqrt{97}}{2}
Qisqartirish.
x=\frac{5\sqrt{97}+35}{2} x=\frac{35-5\sqrt{97}}{2}
\frac{35}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}