d uchun yechish
d = \frac{29}{7} = 4\frac{1}{7} \approx 4,142857143
Baham ko'rish
Klipbordga nusxa olish
15d+875-225d=5
Ikkala tarafdan 225d ni ayirish.
-210d+875=5
-210d ni olish uchun 15d va -225d ni birlashtirish.
-210d=5-875
Ikkala tarafdan 875 ni ayirish.
-210d=-870
-870 olish uchun 5 dan 875 ni ayirish.
d=\frac{-870}{-210}
Ikki tarafini -210 ga bo‘ling.
d=\frac{29}{7}
\frac{-870}{-210} ulushini -30 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}