x uchun yechish
x=\sqrt{14}+2\approx 5,741657387
x=2-\sqrt{14}\approx -1,741657387
Grafik
Baham ko'rish
Klipbordga nusxa olish
10-x^{2}+4x=0
10 olish uchun 15 dan 5 ni ayirish.
-x^{2}+4x+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 4 ni b va 10 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 10}}{2\left(-1\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+4\times 10}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+40}}{2\left(-1\right)}
4 ni 10 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{56}}{2\left(-1\right)}
16 ni 40 ga qo'shish.
x=\frac{-4±2\sqrt{14}}{2\left(-1\right)}
56 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{14}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{14}-4}{-2}
x=\frac{-4±2\sqrt{14}}{-2} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{14} ga qo'shish.
x=2-\sqrt{14}
-4+2\sqrt{14} ni -2 ga bo'lish.
x=\frac{-2\sqrt{14}-4}{-2}
x=\frac{-4±2\sqrt{14}}{-2} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{14} ni ayirish.
x=\sqrt{14}+2
-4-2\sqrt{14} ni -2 ga bo'lish.
x=2-\sqrt{14} x=\sqrt{14}+2
Tenglama yechildi.
10-x^{2}+4x=0
10 olish uchun 15 dan 5 ni ayirish.
-x^{2}+4x=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-x^{2}+4x}{-1}=-\frac{10}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{4}{-1}x=-\frac{10}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{10}{-1}
4 ni -1 ga bo'lish.
x^{2}-4x=10
-10 ni -1 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=10+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=10+4
-2 kvadratini chiqarish.
x^{2}-4x+4=14
10 ni 4 ga qo'shish.
\left(x-2\right)^{2}=14
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\sqrt{14} x-2=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}+2 x=2-\sqrt{14}
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}