x uchun yechish
x=\frac{\sqrt{240009}-3}{40000}\approx 0,012172678
x=\frac{-\sqrt{240009}-3}{40000}\approx -0,012322678
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
15 \times 10 ^ { - 5 } = \frac { x ^ { 2 } } { 1 - x }
Baham ko'rish
Klipbordga nusxa olish
15\times 10^{-5}\left(-x+1\right)=x^{2}
x qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini -x+1 ga ko'paytirish.
15\times \frac{1}{100000}\left(-x+1\right)=x^{2}
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
\frac{3}{20000}\left(-x+1\right)=x^{2}
\frac{3}{20000} hosil qilish uchun 15 va \frac{1}{100000} ni ko'paytirish.
-\frac{3}{20000}x+\frac{3}{20000}=x^{2}
\frac{3}{20000} ga -x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{3}{20000}x+\frac{3}{20000}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}-\frac{3}{20000}x+\frac{3}{20000}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\left(-\frac{3}{20000}\right)^{2}-4\left(-1\right)\times \frac{3}{20000}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -\frac{3}{20000} ni b va \frac{3}{20000} ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\frac{9}{400000000}-4\left(-1\right)\times \frac{3}{20000}}}{2\left(-1\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{20000} kvadratini chiqarish.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\frac{9}{400000000}+4\times \frac{3}{20000}}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\frac{9}{400000000}+\frac{3}{5000}}}{2\left(-1\right)}
4 ni \frac{3}{20000} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\frac{240009}{400000000}}}{2\left(-1\right)}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{400000000} ni \frac{3}{5000} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{3}{20000}\right)±\frac{\sqrt{240009}}{20000}}{2\left(-1\right)}
\frac{240009}{400000000} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{20000}±\frac{\sqrt{240009}}{20000}}{2\left(-1\right)}
-\frac{3}{20000} ning teskarisi \frac{3}{20000} ga teng.
x=\frac{\frac{3}{20000}±\frac{\sqrt{240009}}{20000}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{240009}+3}{-2\times 20000}
x=\frac{\frac{3}{20000}±\frac{\sqrt{240009}}{20000}}{-2} tenglamasini yeching, bunda ± musbat. \frac{3}{20000} ni \frac{\sqrt{240009}}{20000} ga qo'shish.
x=\frac{-\sqrt{240009}-3}{40000}
\frac{3+\sqrt{240009}}{20000} ni -2 ga bo'lish.
x=\frac{3-\sqrt{240009}}{-2\times 20000}
x=\frac{\frac{3}{20000}±\frac{\sqrt{240009}}{20000}}{-2} tenglamasini yeching, bunda ± manfiy. \frac{3}{20000} dan \frac{\sqrt{240009}}{20000} ni ayirish.
x=\frac{\sqrt{240009}-3}{40000}
\frac{3-\sqrt{240009}}{20000} ni -2 ga bo'lish.
x=\frac{-\sqrt{240009}-3}{40000} x=\frac{\sqrt{240009}-3}{40000}
Tenglama yechildi.
15\times 10^{-5}\left(-x+1\right)=x^{2}
x qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini -x+1 ga ko'paytirish.
15\times \frac{1}{100000}\left(-x+1\right)=x^{2}
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
\frac{3}{20000}\left(-x+1\right)=x^{2}
\frac{3}{20000} hosil qilish uchun 15 va \frac{1}{100000} ni ko'paytirish.
-\frac{3}{20000}x+\frac{3}{20000}=x^{2}
\frac{3}{20000} ga -x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{3}{20000}x+\frac{3}{20000}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-\frac{3}{20000}x-x^{2}=-\frac{3}{20000}
Ikkala tarafdan \frac{3}{20000} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-x^{2}-\frac{3}{20000}x=-\frac{3}{20000}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-\frac{3}{20000}x}{-1}=-\frac{\frac{3}{20000}}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{\frac{3}{20000}}{-1}\right)x=-\frac{\frac{3}{20000}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{20000}x=-\frac{\frac{3}{20000}}{-1}
-\frac{3}{20000} ni -1 ga bo'lish.
x^{2}+\frac{3}{20000}x=\frac{3}{20000}
-\frac{3}{20000} ni -1 ga bo'lish.
x^{2}+\frac{3}{20000}x+\left(\frac{3}{40000}\right)^{2}=\frac{3}{20000}+\left(\frac{3}{40000}\right)^{2}
\frac{3}{20000} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{40000} olish uchun. Keyin, \frac{3}{40000} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{20000}x+\frac{9}{1600000000}=\frac{3}{20000}+\frac{9}{1600000000}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{40000} kvadratini chiqarish.
x^{2}+\frac{3}{20000}x+\frac{9}{1600000000}=\frac{240009}{1600000000}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{20000} ni \frac{9}{1600000000} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{40000}\right)^{2}=\frac{240009}{1600000000}
x^{2}+\frac{3}{20000}x+\frac{9}{1600000000} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{40000}\right)^{2}}=\sqrt{\frac{240009}{1600000000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{40000}=\frac{\sqrt{240009}}{40000} x+\frac{3}{40000}=-\frac{\sqrt{240009}}{40000}
Qisqartirish.
x=\frac{\sqrt{240009}-3}{40000} x=\frac{-\sqrt{240009}-3}{40000}
Tenglamaning ikkala tarafidan \frac{3}{40000} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}