Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(15-15x\right)\left(1+x\right)+7x-3=0
15 ga 1-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15-15x^{2}+7x-3=0
15-15x ga 1+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
12-15x^{2}+7x=0
12 olish uchun 15 dan 3 ni ayirish.
-15x^{2}+7x+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\left(-15\right)\times 12}}{2\left(-15\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -15 ni a, 7 ni b va 12 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\left(-15\right)\times 12}}{2\left(-15\right)}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49+60\times 12}}{2\left(-15\right)}
-4 ni -15 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+720}}{2\left(-15\right)}
60 ni 12 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{769}}{2\left(-15\right)}
49 ni 720 ga qo'shish.
x=\frac{-7±\sqrt{769}}{-30}
2 ni -15 marotabaga ko'paytirish.
x=\frac{\sqrt{769}-7}{-30}
x=\frac{-7±\sqrt{769}}{-30} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{769} ga qo'shish.
x=\frac{7-\sqrt{769}}{30}
-7+\sqrt{769} ni -30 ga bo'lish.
x=\frac{-\sqrt{769}-7}{-30}
x=\frac{-7±\sqrt{769}}{-30} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{769} ni ayirish.
x=\frac{\sqrt{769}+7}{30}
-7-\sqrt{769} ni -30 ga bo'lish.
x=\frac{7-\sqrt{769}}{30} x=\frac{\sqrt{769}+7}{30}
Tenglama yechildi.
\left(15-15x\right)\left(1+x\right)+7x-3=0
15 ga 1-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15-15x^{2}+7x-3=0
15-15x ga 1+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
12-15x^{2}+7x=0
12 olish uchun 15 dan 3 ni ayirish.
-15x^{2}+7x=-12
Ikkala tarafdan 12 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-15x^{2}+7x}{-15}=-\frac{12}{-15}
Ikki tarafini -15 ga bo‘ling.
x^{2}+\frac{7}{-15}x=-\frac{12}{-15}
-15 ga bo'lish -15 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{15}x=-\frac{12}{-15}
7 ni -15 ga bo'lish.
x^{2}-\frac{7}{15}x=\frac{4}{5}
\frac{-12}{-15} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{15}x+\left(-\frac{7}{30}\right)^{2}=\frac{4}{5}+\left(-\frac{7}{30}\right)^{2}
-\frac{7}{15} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{30} olish uchun. Keyin, -\frac{7}{30} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{15}x+\frac{49}{900}=\frac{4}{5}+\frac{49}{900}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{30} kvadratini chiqarish.
x^{2}-\frac{7}{15}x+\frac{49}{900}=\frac{769}{900}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{5} ni \frac{49}{900} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{30}\right)^{2}=\frac{769}{900}
x^{2}-\frac{7}{15}x+\frac{49}{900} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{30}\right)^{2}}=\sqrt{\frac{769}{900}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{30}=\frac{\sqrt{769}}{30} x-\frac{7}{30}=-\frac{\sqrt{769}}{30}
Qisqartirish.
x=\frac{\sqrt{769}+7}{30} x=\frac{7-\sqrt{769}}{30}
\frac{7}{30} ni tenglamaning ikkala tarafiga qo'shish.