Baholash
\frac{851}{140}\approx 6,078571429
Omil
\frac{23 \cdot 37}{2 ^ {2} \cdot 5 \cdot 7} = 6\frac{11}{140} = 6,078571428571428
Baham ko'rish
Klipbordga nusxa olish
\frac{75+2}{5}-\left(\frac{2\times 7+4}{7}+\frac{6\times 4+3}{4}\right)
75 hosil qilish uchun 15 va 5 ni ko'paytirish.
\frac{77}{5}-\left(\frac{2\times 7+4}{7}+\frac{6\times 4+3}{4}\right)
77 olish uchun 75 va 2'ni qo'shing.
\frac{77}{5}-\left(\frac{14+4}{7}+\frac{6\times 4+3}{4}\right)
14 hosil qilish uchun 2 va 7 ni ko'paytirish.
\frac{77}{5}-\left(\frac{18}{7}+\frac{6\times 4+3}{4}\right)
18 olish uchun 14 va 4'ni qo'shing.
\frac{77}{5}-\left(\frac{18}{7}+\frac{24+3}{4}\right)
24 hosil qilish uchun 6 va 4 ni ko'paytirish.
\frac{77}{5}-\left(\frac{18}{7}+\frac{27}{4}\right)
27 olish uchun 24 va 3'ni qo'shing.
\frac{77}{5}-\left(\frac{72}{28}+\frac{189}{28}\right)
7 va 4 ning eng kichik umumiy karralisi 28 ga teng. \frac{18}{7} va \frac{27}{4} ni 28 maxraj bilan kasrlarga aylantirib oling.
\frac{77}{5}-\frac{72+189}{28}
\frac{72}{28} va \frac{189}{28} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{77}{5}-\frac{261}{28}
261 olish uchun 72 va 189'ni qo'shing.
\frac{2156}{140}-\frac{1305}{140}
5 va 28 ning eng kichik umumiy karralisi 140 ga teng. \frac{77}{5} va \frac{261}{28} ni 140 maxraj bilan kasrlarga aylantirib oling.
\frac{2156-1305}{140}
\frac{2156}{140} va \frac{1305}{140} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{851}{140}
851 olish uchun 2156 dan 1305 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}