Asosiy tarkibga oʻtish
q uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

q^{2}=\frac{25}{144}
Ikki tarafini 144 ga bo‘ling.
q^{2}-\frac{25}{144}=0
Ikkala tarafdan \frac{25}{144} ni ayirish.
144q^{2}-25=0
Ikkala tarafini 144 ga ko‘paytiring.
\left(12q-5\right)\left(12q+5\right)=0
Hisoblang: 144q^{2}-25. 144q^{2}-25 ni \left(12q\right)^{2}-5^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
q=\frac{5}{12} q=-\frac{5}{12}
Tenglamani yechish uchun 12q-5=0 va 12q+5=0 ni yeching.
q^{2}=\frac{25}{144}
Ikki tarafini 144 ga bo‘ling.
q=\frac{5}{12} q=-\frac{5}{12}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
q^{2}=\frac{25}{144}
Ikki tarafini 144 ga bo‘ling.
q^{2}-\frac{25}{144}=0
Ikkala tarafdan \frac{25}{144} ni ayirish.
q=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{144}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{25}{144} ni c bilan almashtiring.
q=\frac{0±\sqrt{-4\left(-\frac{25}{144}\right)}}{2}
0 kvadratini chiqarish.
q=\frac{0±\sqrt{\frac{25}{36}}}{2}
-4 ni -\frac{25}{144} marotabaga ko'paytirish.
q=\frac{0±\frac{5}{6}}{2}
\frac{25}{36} ning kvadrat ildizini chiqarish.
q=\frac{5}{12}
q=\frac{0±\frac{5}{6}}{2} tenglamasini yeching, bunda ± musbat.
q=-\frac{5}{12}
q=\frac{0±\frac{5}{6}}{2} tenglamasini yeching, bunda ± manfiy.
q=\frac{5}{12} q=-\frac{5}{12}
Tenglama yechildi.