Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

140\times \left(\frac{1}{2}\right)^{\frac{1}{n}t}=40
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\left(\frac{1}{2}\right)^{\frac{1}{n}t}=\frac{2}{7}
Ikki tarafini 140 ga bo‘ling.
\log(\left(\frac{1}{2}\right)^{\frac{1}{n}t})=\log(\frac{2}{7})
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\frac{1}{n}t\log(\frac{1}{2})=\log(\frac{2}{7})
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
\frac{1}{n}t=\frac{\log(\frac{2}{7})}{\log(\frac{1}{2})}
Ikki tarafini \log(\frac{1}{2}) ga bo‘ling.
\frac{1}{n}t=\log_{\frac{1}{2}}\left(\frac{2}{7}\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\left(-\left(-\log_{2}\left(7\right)+1\right)\right)n}{1}
Ikki tarafini n^{-1} ga bo‘ling.