t uchun yechish
t=\left(\log_{2}\left(7\right)-1\right)n
n\neq 0
n uchun yechish
n=-\log_{\frac{2}{7}}\left(2\right)t
t\neq 0
Baham ko'rish
Klipbordga nusxa olish
140\times \left(\frac{1}{2}\right)^{\frac{1}{n}t}=40
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\left(\frac{1}{2}\right)^{\frac{1}{n}t}=\frac{2}{7}
Ikki tarafini 140 ga bo‘ling.
\log(\left(\frac{1}{2}\right)^{\frac{1}{n}t})=\log(\frac{2}{7})
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\frac{1}{n}t\log(\frac{1}{2})=\log(\frac{2}{7})
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
\frac{1}{n}t=\frac{\log(\frac{2}{7})}{\log(\frac{1}{2})}
Ikki tarafini \log(\frac{1}{2}) ga bo‘ling.
\frac{1}{n}t=\log_{\frac{1}{2}}\left(\frac{2}{7}\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\left(-\left(-\log_{2}\left(7\right)+1\right)\right)n}{1}
Ikki tarafini n^{-1} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}