Omil
146\left(x-\frac{-\sqrt{1169}-1}{292}\right)\left(x-\frac{\sqrt{1169}-1}{292}\right)
Baholash
146x^{2}+x-2
Grafik
Viktorina
Polynomial
146 x ^ { 2 } + x - 2
Baham ko'rish
Klipbordga nusxa olish
146x^{2}+x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-1±\sqrt{1^{2}-4\times 146\left(-2\right)}}{2\times 146}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1-4\times 146\left(-2\right)}}{2\times 146}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-584\left(-2\right)}}{2\times 146}
-4 ni 146 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+1168}}{2\times 146}
-584 ni -2 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1169}}{2\times 146}
1 ni 1168 ga qo'shish.
x=\frac{-1±\sqrt{1169}}{292}
2 ni 146 marotabaga ko'paytirish.
x=\frac{\sqrt{1169}-1}{292}
x=\frac{-1±\sqrt{1169}}{292} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{1169} ga qo'shish.
x=\frac{-\sqrt{1169}-1}{292}
x=\frac{-1±\sqrt{1169}}{292} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{1169} ni ayirish.
146x^{2}+x-2=146\left(x-\frac{\sqrt{1169}-1}{292}\right)\left(x-\frac{-\sqrt{1169}-1}{292}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1+\sqrt{1169}}{292} ga va x_{2} uchun \frac{-1-\sqrt{1169}}{292} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}