Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+14x-4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-14±\sqrt{196-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196+4\left(-4\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{196-16}}{2\left(-1\right)}
4 ni -4 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{180}}{2\left(-1\right)}
196 ni -16 ga qo'shish.
x=\frac{-14±6\sqrt{5}}{2\left(-1\right)}
180 ning kvadrat ildizini chiqarish.
x=\frac{-14±6\sqrt{5}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{6\sqrt{5}-14}{-2}
x=\frac{-14±6\sqrt{5}}{-2} tenglamasini yeching, bunda ± musbat. -14 ni 6\sqrt{5} ga qo'shish.
x=7-3\sqrt{5}
-14+6\sqrt{5} ni -2 ga bo'lish.
x=\frac{-6\sqrt{5}-14}{-2}
x=\frac{-14±6\sqrt{5}}{-2} tenglamasini yeching, bunda ± manfiy. -14 dan 6\sqrt{5} ni ayirish.
x=3\sqrt{5}+7
-14-6\sqrt{5} ni -2 ga bo'lish.
-x^{2}+14x-4=-\left(x-\left(7-3\sqrt{5}\right)\right)\left(x-\left(3\sqrt{5}+7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 7-3\sqrt{5} ga va x_{2} uchun 7+3\sqrt{5} ga bo‘ling.