Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

14x^{2}+2x=3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
14x^{2}+2x-3=3-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
14x^{2}+2x-3=0
O‘zidan 3 ayirilsa 0 qoladi.
x=\frac{-2±\sqrt{2^{2}-4\times 14\left(-3\right)}}{2\times 14}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 14 ni a, 2 ni b va -3 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 14\left(-3\right)}}{2\times 14}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-56\left(-3\right)}}{2\times 14}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+168}}{2\times 14}
-56 ni -3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{172}}{2\times 14}
4 ni 168 ga qo'shish.
x=\frac{-2±2\sqrt{43}}{2\times 14}
172 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{43}}{28}
2 ni 14 marotabaga ko'paytirish.
x=\frac{2\sqrt{43}-2}{28}
x=\frac{-2±2\sqrt{43}}{28} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{43} ga qo'shish.
x=\frac{\sqrt{43}-1}{14}
-2+2\sqrt{43} ni 28 ga bo'lish.
x=\frac{-2\sqrt{43}-2}{28}
x=\frac{-2±2\sqrt{43}}{28} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{43} ni ayirish.
x=\frac{-\sqrt{43}-1}{14}
-2-2\sqrt{43} ni 28 ga bo'lish.
x=\frac{\sqrt{43}-1}{14} x=\frac{-\sqrt{43}-1}{14}
Tenglama yechildi.
14x^{2}+2x=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{14x^{2}+2x}{14}=\frac{3}{14}
Ikki tarafini 14 ga bo‘ling.
x^{2}+\frac{2}{14}x=\frac{3}{14}
14 ga bo'lish 14 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{7}x=\frac{3}{14}
\frac{2}{14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{7}x+\left(\frac{1}{14}\right)^{2}=\frac{3}{14}+\left(\frac{1}{14}\right)^{2}
\frac{1}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{14} olish uchun. Keyin, \frac{1}{14} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{3}{14}+\frac{1}{196}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{14} kvadratini chiqarish.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{43}{196}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{14} ni \frac{1}{196} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{14}\right)^{2}=\frac{43}{196}
x^{2}+\frac{1}{7}x+\frac{1}{196} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{14}\right)^{2}}=\sqrt{\frac{43}{196}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{14}=\frac{\sqrt{43}}{14} x+\frac{1}{14}=-\frac{\sqrt{43}}{14}
Qisqartirish.
x=\frac{\sqrt{43}-1}{14} x=\frac{-\sqrt{43}-1}{14}
Tenglamaning ikkala tarafidan \frac{1}{14} ni ayirish.