Omil
2\left(7x-1\right)\left(x+1\right)
Baholash
2\left(7x-1\right)\left(x+1\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(7x^{2}+6x-1\right)
2 omili.
a+b=6 ab=7\left(-1\right)=-7
Hisoblang: 7x^{2}+6x-1. Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 7x^{2}+ax+bx-1 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-1 b=7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(7x^{2}-x\right)+\left(7x-1\right)
7x^{2}+6x-1 ni \left(7x^{2}-x\right)+\left(7x-1\right) sifatida qaytadan yozish.
x\left(7x-1\right)+7x-1
7x^{2}-x ichida x ni ajrating.
\left(7x-1\right)\left(x+1\right)
Distributiv funktsiyasidan foydalangan holda 7x-1 umumiy terminini chiqaring.
2\left(7x-1\right)\left(x+1\right)
Toʻliq ajratilgan ifodani qaytadan yozing.
14x^{2}+12x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-12±\sqrt{12^{2}-4\times 14\left(-2\right)}}{2\times 14}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{144-4\times 14\left(-2\right)}}{2\times 14}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-56\left(-2\right)}}{2\times 14}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+112}}{2\times 14}
-56 ni -2 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{256}}{2\times 14}
144 ni 112 ga qo'shish.
x=\frac{-12±16}{2\times 14}
256 ning kvadrat ildizini chiqarish.
x=\frac{-12±16}{28}
2 ni 14 marotabaga ko'paytirish.
x=\frac{4}{28}
x=\frac{-12±16}{28} tenglamasini yeching, bunda ± musbat. -12 ni 16 ga qo'shish.
x=\frac{1}{7}
\frac{4}{28} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{28}{28}
x=\frac{-12±16}{28} tenglamasini yeching, bunda ± manfiy. -12 dan 16 ni ayirish.
x=-1
-28 ni 28 ga bo'lish.
14x^{2}+12x-2=14\left(x-\frac{1}{7}\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1}{7} ga va x_{2} uchun -1 ga bo‘ling.
14x^{2}+12x-2=14\left(x-\frac{1}{7}\right)\left(x+1\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
14x^{2}+12x-2=14\times \frac{7x-1}{7}\left(x+1\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{1}{7} ni x dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
14x^{2}+12x-2=2\left(7x-1\right)\left(x+1\right)
14 va 7 ichida eng katta umumiy 7 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}