x uchun yechish
x=2\sqrt{93}+18\approx 37,287301522
x=18-2\sqrt{93}\approx -1,287301522
Grafik
Baham ko'rish
Klipbordga nusxa olish
38x+48=x^{2}+2x
38x ni olish uchun 14x va 24x ni birlashtirish.
38x+48-x^{2}=2x
Ikkala tarafdan x^{2} ni ayirish.
38x+48-x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
36x+48-x^{2}=0
36x ni olish uchun 38x va -2x ni birlashtirish.
-x^{2}+36x+48=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-36±\sqrt{36^{2}-4\left(-1\right)\times 48}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 36 ni b va 48 ni c bilan almashtiring.
x=\frac{-36±\sqrt{1296-4\left(-1\right)\times 48}}{2\left(-1\right)}
36 kvadratini chiqarish.
x=\frac{-36±\sqrt{1296+4\times 48}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-36±\sqrt{1296+192}}{2\left(-1\right)}
4 ni 48 marotabaga ko'paytirish.
x=\frac{-36±\sqrt{1488}}{2\left(-1\right)}
1296 ni 192 ga qo'shish.
x=\frac{-36±4\sqrt{93}}{2\left(-1\right)}
1488 ning kvadrat ildizini chiqarish.
x=\frac{-36±4\sqrt{93}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4\sqrt{93}-36}{-2}
x=\frac{-36±4\sqrt{93}}{-2} tenglamasini yeching, bunda ± musbat. -36 ni 4\sqrt{93} ga qo'shish.
x=18-2\sqrt{93}
-36+4\sqrt{93} ni -2 ga bo'lish.
x=\frac{-4\sqrt{93}-36}{-2}
x=\frac{-36±4\sqrt{93}}{-2} tenglamasini yeching, bunda ± manfiy. -36 dan 4\sqrt{93} ni ayirish.
x=2\sqrt{93}+18
-36-4\sqrt{93} ni -2 ga bo'lish.
x=18-2\sqrt{93} x=2\sqrt{93}+18
Tenglama yechildi.
38x+48=x^{2}+2x
38x ni olish uchun 14x va 24x ni birlashtirish.
38x+48-x^{2}=2x
Ikkala tarafdan x^{2} ni ayirish.
38x+48-x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
36x+48-x^{2}=0
36x ni olish uchun 38x va -2x ni birlashtirish.
36x-x^{2}=-48
Ikkala tarafdan 48 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-x^{2}+36x=-48
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+36x}{-1}=-\frac{48}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{36}{-1}x=-\frac{48}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-36x=-\frac{48}{-1}
36 ni -1 ga bo'lish.
x^{2}-36x=48
-48 ni -1 ga bo'lish.
x^{2}-36x+\left(-18\right)^{2}=48+\left(-18\right)^{2}
-36 ni bo‘lish, x shartining koeffitsienti, 2 ga -18 olish uchun. Keyin, -18 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-36x+324=48+324
-18 kvadratini chiqarish.
x^{2}-36x+324=372
48 ni 324 ga qo'shish.
\left(x-18\right)^{2}=372
x^{2}-36x+324 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-18\right)^{2}}=\sqrt{372}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-18=2\sqrt{93} x-18=-2\sqrt{93}
Qisqartirish.
x=2\sqrt{93}+18 x=18-2\sqrt{93}
18 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}