x uchun yechish
x = \frac{\sqrt{793} + 25}{4} \approx 13,29006392
x=\frac{25-\sqrt{793}}{4}\approx -0,79006392
Grafik
Baham ko'rish
Klipbordga nusxa olish
14x+10,5-x^{2}=1,5x
Ikkala tarafdan x^{2} ni ayirish.
14x+10,5-x^{2}-1,5x=0
Ikkala tarafdan 1,5x ni ayirish.
12,5x+10,5-x^{2}=0
12,5x ni olish uchun 14x va -1,5x ni birlashtirish.
-x^{2}+12,5x+10,5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12,5±\sqrt{12,5^{2}-4\left(-1\right)\times 10,5}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 12,5 ni b va 10,5 ni c bilan almashtiring.
x=\frac{-12,5±\sqrt{156,25-4\left(-1\right)\times 10,5}}{2\left(-1\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib 12,5 kvadratini chiqarish.
x=\frac{-12,5±\sqrt{156,25+4\times 10,5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-12,5±\sqrt{156,25+42}}{2\left(-1\right)}
4 ni 10,5 marotabaga ko'paytirish.
x=\frac{-12,5±\sqrt{198,25}}{2\left(-1\right)}
156,25 ni 42 ga qo'shish.
x=\frac{-12,5±\frac{\sqrt{793}}{2}}{2\left(-1\right)}
198,25 ning kvadrat ildizini chiqarish.
x=\frac{-12,5±\frac{\sqrt{793}}{2}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{793}-25}{-2\times 2}
x=\frac{-12,5±\frac{\sqrt{793}}{2}}{-2} tenglamasini yeching, bunda ± musbat. -12,5 ni \frac{\sqrt{793}}{2} ga qo'shish.
x=\frac{25-\sqrt{793}}{4}
\frac{-25+\sqrt{793}}{2} ni -2 ga bo'lish.
x=\frac{-\sqrt{793}-25}{-2\times 2}
x=\frac{-12,5±\frac{\sqrt{793}}{2}}{-2} tenglamasini yeching, bunda ± manfiy. -12,5 dan \frac{\sqrt{793}}{2} ni ayirish.
x=\frac{\sqrt{793}+25}{4}
\frac{-25-\sqrt{793}}{2} ni -2 ga bo'lish.
x=\frac{25-\sqrt{793}}{4} x=\frac{\sqrt{793}+25}{4}
Tenglama yechildi.
14x+10.5-x^{2}=1.5x
Ikkala tarafdan x^{2} ni ayirish.
14x+10.5-x^{2}-1.5x=0
Ikkala tarafdan 1.5x ni ayirish.
12.5x+10.5-x^{2}=0
12.5x ni olish uchun 14x va -1.5x ni birlashtirish.
12.5x-x^{2}=-10.5
Ikkala tarafdan 10.5 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-x^{2}+12.5x=-10.5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+12.5x}{-1}=-\frac{10.5}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{12.5}{-1}x=-\frac{10.5}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-12.5x=-\frac{10.5}{-1}
12.5 ni -1 ga bo'lish.
x^{2}-12.5x=10.5
-10.5 ni -1 ga bo'lish.
x^{2}-12.5x+\left(-6.25\right)^{2}=10.5+\left(-6.25\right)^{2}
-12.5 ni bo‘lish, x shartining koeffitsienti, 2 ga -6.25 olish uchun. Keyin, -6.25 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12.5x+39.0625=10.5+39.0625
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -6.25 kvadratini chiqarish.
x^{2}-12.5x+39.0625=49.5625
Umumiy maxrajni topib va hisoblovchini qo'shish orqali 10.5 ni 39.0625 ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-6.25\right)^{2}=49.5625
x^{2}-12.5x+39.0625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6.25\right)^{2}}=\sqrt{49.5625}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6.25=\frac{\sqrt{793}}{4} x-6.25=-\frac{\sqrt{793}}{4}
Qisqartirish.
x=\frac{\sqrt{793}+25}{4} x=\frac{25-\sqrt{793}}{4}
6.25 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}