Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

14-9a^{2}+4a^{2}=-16
4a^{2} ni ikki tarafga qo’shing.
14-5a^{2}=-16
-5a^{2} ni olish uchun -9a^{2} va 4a^{2} ni birlashtirish.
-5a^{2}=-16-14
Ikkala tarafdan 14 ni ayirish.
-5a^{2}=-30
-30 olish uchun -16 dan 14 ni ayirish.
a^{2}=\frac{-30}{-5}
Ikki tarafini -5 ga bo‘ling.
a^{2}=6
6 ni olish uchun -30 ni -5 ga bo‘ling.
a=\sqrt{6} a=-\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
14-9a^{2}-\left(-16\right)=-4a^{2}
Ikkala tarafdan -16 ni ayirish.
14-9a^{2}+16=-4a^{2}
-16 ning teskarisi 16 ga teng.
14-9a^{2}+16+4a^{2}=0
4a^{2} ni ikki tarafga qo’shing.
30-9a^{2}+4a^{2}=0
30 olish uchun 14 va 16'ni qo'shing.
30-5a^{2}=0
-5a^{2} ni olish uchun -9a^{2} va 4a^{2} ni birlashtirish.
-5a^{2}+30=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 30}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 0 ni b va 30 ni c bilan almashtiring.
a=\frac{0±\sqrt{-4\left(-5\right)\times 30}}{2\left(-5\right)}
0 kvadratini chiqarish.
a=\frac{0±\sqrt{20\times 30}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
a=\frac{0±\sqrt{600}}{2\left(-5\right)}
20 ni 30 marotabaga ko'paytirish.
a=\frac{0±10\sqrt{6}}{2\left(-5\right)}
600 ning kvadrat ildizini chiqarish.
a=\frac{0±10\sqrt{6}}{-10}
2 ni -5 marotabaga ko'paytirish.
a=-\sqrt{6}
a=\frac{0±10\sqrt{6}}{-10} tenglamasini yeching, bunda ± musbat.
a=\sqrt{6}
a=\frac{0±10\sqrt{6}}{-10} tenglamasini yeching, bunda ± manfiy.
a=-\sqrt{6} a=\sqrt{6}
Tenglama yechildi.