x uchun yechish
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1,666666667
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
14-3x^{2}=-x+4
x^{2} hosil qilish uchun x va x ni ko'paytirish.
14-3x^{2}+x=4
x ni ikki tarafga qo’shing.
14-3x^{2}+x-4=0
Ikkala tarafdan 4 ni ayirish.
10-3x^{2}+x=0
10 olish uchun 14 dan 4 ni ayirish.
-3x^{2}+x+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\left(-3\right)\times 10}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 1 ni b va 10 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-3\right)\times 10}}{2\left(-3\right)}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+12\times 10}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+120}}{2\left(-3\right)}
12 ni 10 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{121}}{2\left(-3\right)}
1 ni 120 ga qo'shish.
x=\frac{-1±11}{2\left(-3\right)}
121 ning kvadrat ildizini chiqarish.
x=\frac{-1±11}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{10}{-6}
x=\frac{-1±11}{-6} tenglamasini yeching, bunda ± musbat. -1 ni 11 ga qo'shish.
x=-\frac{5}{3}
\frac{10}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{12}{-6}
x=\frac{-1±11}{-6} tenglamasini yeching, bunda ± manfiy. -1 dan 11 ni ayirish.
x=2
-12 ni -6 ga bo'lish.
x=-\frac{5}{3} x=2
Tenglama yechildi.
14-3x^{2}=-x+4
x^{2} hosil qilish uchun x va x ni ko'paytirish.
14-3x^{2}+x=4
x ni ikki tarafga qo’shing.
-3x^{2}+x=4-14
Ikkala tarafdan 14 ni ayirish.
-3x^{2}+x=-10
-10 olish uchun 4 dan 14 ni ayirish.
\frac{-3x^{2}+x}{-3}=-\frac{10}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{1}{-3}x=-\frac{10}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{3}x=-\frac{10}{-3}
1 ni -3 ga bo'lish.
x^{2}-\frac{1}{3}x=\frac{10}{3}
-10 ni -3 ga bo'lish.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{10}{3}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{6} olish uchun. Keyin, -\frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{10}{3}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{121}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{10}{3} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{6}\right)^{2}=\frac{121}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{6}=\frac{11}{6} x-\frac{1}{6}=-\frac{11}{6}
Qisqartirish.
x=2 x=-\frac{5}{3}
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}