x uchun yechish
x=9
x=16
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
14 \times \frac{ x }{ 12+x } \times \frac{ 14 }{ 12+x } =4
Baham ko'rish
Klipbordga nusxa olish
14x\times \frac{14}{12+x}=4\left(x+12\right)
x qiymati -12 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+12 ga ko'paytirish.
\frac{14\times 14}{12+x}x=4\left(x+12\right)
14\times \frac{14}{12+x} ni yagona kasrga aylantiring.
\frac{14\times 14}{12+x}x=4x+48
4 ga x+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{196}{12+x}x=4x+48
196 hosil qilish uchun 14 va 14 ni ko'paytirish.
\frac{196x}{12+x}=4x+48
\frac{196}{12+x}x ni yagona kasrga aylantiring.
\frac{196x}{12+x}-4x=48
Ikkala tarafdan 4x ni ayirish.
\frac{196x}{12+x}+\frac{-4x\left(12+x\right)}{12+x}=48
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. -4x ni \frac{12+x}{12+x} marotabaga ko'paytirish.
\frac{196x-4x\left(12+x\right)}{12+x}=48
\frac{196x}{12+x} va \frac{-4x\left(12+x\right)}{12+x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{196x-48x-4x^{2}}{12+x}=48
196x-4x\left(12+x\right) ichidagi ko‘paytirishlarni bajaring.
\frac{148x-4x^{2}}{12+x}=48
196x-48x-4x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{148x-4x^{2}}{12+x}-48=0
Ikkala tarafdan 48 ni ayirish.
\frac{148x-4x^{2}}{12+x}-\frac{48\left(12+x\right)}{12+x}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 48 ni \frac{12+x}{12+x} marotabaga ko'paytirish.
\frac{148x-4x^{2}-48\left(12+x\right)}{12+x}=0
\frac{148x-4x^{2}}{12+x} va \frac{48\left(12+x\right)}{12+x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{148x-4x^{2}-576-48x}{12+x}=0
148x-4x^{2}-48\left(12+x\right) ichidagi ko‘paytirishlarni bajaring.
\frac{100x-4x^{2}-576}{12+x}=0
148x-4x^{2}-576-48x kabi iboralarga o‘xshab birlashtiring.
100x-4x^{2}-576=0
x qiymati -12 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+12 ga ko'paytirish.
-4x^{2}+100x-576=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-100±\sqrt{100^{2}-4\left(-4\right)\left(-576\right)}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 100 ni b va -576 ni c bilan almashtiring.
x=\frac{-100±\sqrt{10000-4\left(-4\right)\left(-576\right)}}{2\left(-4\right)}
100 kvadratini chiqarish.
x=\frac{-100±\sqrt{10000+16\left(-576\right)}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{10000-9216}}{2\left(-4\right)}
16 ni -576 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{784}}{2\left(-4\right)}
10000 ni -9216 ga qo'shish.
x=\frac{-100±28}{2\left(-4\right)}
784 ning kvadrat ildizini chiqarish.
x=\frac{-100±28}{-8}
2 ni -4 marotabaga ko'paytirish.
x=-\frac{72}{-8}
x=\frac{-100±28}{-8} tenglamasini yeching, bunda ± musbat. -100 ni 28 ga qo'shish.
x=9
-72 ni -8 ga bo'lish.
x=-\frac{128}{-8}
x=\frac{-100±28}{-8} tenglamasini yeching, bunda ± manfiy. -100 dan 28 ni ayirish.
x=16
-128 ni -8 ga bo'lish.
x=9 x=16
Tenglama yechildi.
14x\times \frac{14}{12+x}=4\left(x+12\right)
x qiymati -12 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+12 ga ko'paytirish.
\frac{14\times 14}{12+x}x=4\left(x+12\right)
14\times \frac{14}{12+x} ni yagona kasrga aylantiring.
\frac{14\times 14}{12+x}x=4x+48
4 ga x+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{196}{12+x}x=4x+48
196 hosil qilish uchun 14 va 14 ni ko'paytirish.
\frac{196x}{12+x}=4x+48
\frac{196}{12+x}x ni yagona kasrga aylantiring.
\frac{196x}{12+x}-4x=48
Ikkala tarafdan 4x ni ayirish.
\frac{196x}{12+x}+\frac{-4x\left(12+x\right)}{12+x}=48
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. -4x ni \frac{12+x}{12+x} marotabaga ko'paytirish.
\frac{196x-4x\left(12+x\right)}{12+x}=48
\frac{196x}{12+x} va \frac{-4x\left(12+x\right)}{12+x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{196x-48x-4x^{2}}{12+x}=48
196x-4x\left(12+x\right) ichidagi ko‘paytirishlarni bajaring.
\frac{148x-4x^{2}}{12+x}=48
196x-48x-4x^{2} kabi iboralarga o‘xshab birlashtiring.
148x-4x^{2}=48\left(x+12\right)
x qiymati -12 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+12 ga ko'paytirish.
148x-4x^{2}=48x+576
48 ga x+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
148x-4x^{2}-48x=576
Ikkala tarafdan 48x ni ayirish.
100x-4x^{2}=576
100x ni olish uchun 148x va -48x ni birlashtirish.
-4x^{2}+100x=576
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-4x^{2}+100x}{-4}=\frac{576}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}+\frac{100}{-4}x=\frac{576}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x^{2}-25x=\frac{576}{-4}
100 ni -4 ga bo'lish.
x^{2}-25x=-144
576 ni -4 ga bo'lish.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-144+\left(-\frac{25}{2}\right)^{2}
-25 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{2} olish uchun. Keyin, -\frac{25}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-25x+\frac{625}{4}=-144+\frac{625}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{2} kvadratini chiqarish.
x^{2}-25x+\frac{625}{4}=\frac{49}{4}
-144 ni \frac{625}{4} ga qo'shish.
\left(x-\frac{25}{2}\right)^{2}=\frac{49}{4}
x^{2}-25x+\frac{625}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{2}=\frac{7}{2} x-\frac{25}{2}=-\frac{7}{2}
Qisqartirish.
x=16 x=9
\frac{25}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}