Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1330}{16}=x^{2}
Ikki tarafini 16 ga bo‘ling.
\frac{665}{8}=x^{2}
\frac{1330}{16} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}=\frac{665}{8}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{\sqrt{1330}}{4} x=-\frac{\sqrt{1330}}{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\frac{1330}{16}=x^{2}
Ikki tarafini 16 ga bo‘ling.
\frac{665}{8}=x^{2}
\frac{1330}{16} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}=\frac{665}{8}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-\frac{665}{8}=0
Ikkala tarafdan \frac{665}{8} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{665}{8}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{665}{8} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{665}{8}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\frac{665}{2}}}{2}
-4 ni -\frac{665}{8} marotabaga ko'paytirish.
x=\frac{0±\frac{\sqrt{1330}}{2}}{2}
\frac{665}{2} ning kvadrat ildizini chiqarish.
x=\frac{\sqrt{1330}}{4}
x=\frac{0±\frac{\sqrt{1330}}{2}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{1330}}{4}
x=\frac{0±\frac{\sqrt{1330}}{2}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{1330}}{4} x=-\frac{\sqrt{1330}}{4}
Tenglama yechildi.