x uchun yechish (complex solution)
x=\frac{689+\sqrt{89525999}i}{6579}\approx 0,104727162+1,438184824i
x=\frac{-\sqrt{89525999}i+689}{6579}\approx 0,104727162-1,438184824i
Grafik
Baham ko'rish
Klipbordga nusxa olish
13158x^{2}-2756x+27360=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2756\right)±\sqrt{\left(-2756\right)^{2}-4\times 13158\times 27360}}{2\times 13158}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 13158 ni a, -2756 ni b va 27360 ni c bilan almashtiring.
x=\frac{-\left(-2756\right)±\sqrt{7595536-4\times 13158\times 27360}}{2\times 13158}
-2756 kvadratini chiqarish.
x=\frac{-\left(-2756\right)±\sqrt{7595536-52632\times 27360}}{2\times 13158}
-4 ni 13158 marotabaga ko'paytirish.
x=\frac{-\left(-2756\right)±\sqrt{7595536-1440011520}}{2\times 13158}
-52632 ni 27360 marotabaga ko'paytirish.
x=\frac{-\left(-2756\right)±\sqrt{-1432415984}}{2\times 13158}
7595536 ni -1440011520 ga qo'shish.
x=\frac{-\left(-2756\right)±4\sqrt{89525999}i}{2\times 13158}
-1432415984 ning kvadrat ildizini chiqarish.
x=\frac{2756±4\sqrt{89525999}i}{2\times 13158}
-2756 ning teskarisi 2756 ga teng.
x=\frac{2756±4\sqrt{89525999}i}{26316}
2 ni 13158 marotabaga ko'paytirish.
x=\frac{2756+4\sqrt{89525999}i}{26316}
x=\frac{2756±4\sqrt{89525999}i}{26316} tenglamasini yeching, bunda ± musbat. 2756 ni 4i\sqrt{89525999} ga qo'shish.
x=\frac{689+\sqrt{89525999}i}{6579}
2756+4i\sqrt{89525999} ni 26316 ga bo'lish.
x=\frac{-4\sqrt{89525999}i+2756}{26316}
x=\frac{2756±4\sqrt{89525999}i}{26316} tenglamasini yeching, bunda ± manfiy. 2756 dan 4i\sqrt{89525999} ni ayirish.
x=\frac{-\sqrt{89525999}i+689}{6579}
2756-4i\sqrt{89525999} ni 26316 ga bo'lish.
x=\frac{689+\sqrt{89525999}i}{6579} x=\frac{-\sqrt{89525999}i+689}{6579}
Tenglama yechildi.
13158x^{2}-2756x+27360=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
13158x^{2}-2756x+27360-27360=-27360
Tenglamaning ikkala tarafidan 27360 ni ayirish.
13158x^{2}-2756x=-27360
O‘zidan 27360 ayirilsa 0 qoladi.
\frac{13158x^{2}-2756x}{13158}=-\frac{27360}{13158}
Ikki tarafini 13158 ga bo‘ling.
x^{2}+\left(-\frac{2756}{13158}\right)x=-\frac{27360}{13158}
13158 ga bo'lish 13158 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1378}{6579}x=-\frac{27360}{13158}
\frac{-2756}{13158} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1378}{6579}x=-\frac{1520}{731}
\frac{-27360}{13158} ulushini 18 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1378}{6579}x+\left(-\frac{689}{6579}\right)^{2}=-\frac{1520}{731}+\left(-\frac{689}{6579}\right)^{2}
-\frac{1378}{6579} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{689}{6579} olish uchun. Keyin, -\frac{689}{6579} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1378}{6579}x+\frac{474721}{43283241}=-\frac{1520}{731}+\frac{474721}{43283241}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{689}{6579} kvadratini chiqarish.
x^{2}-\frac{1378}{6579}x+\frac{474721}{43283241}=-\frac{89525999}{43283241}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1520}{731} ni \frac{474721}{43283241} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{689}{6579}\right)^{2}=-\frac{89525999}{43283241}
x^{2}-\frac{1378}{6579}x+\frac{474721}{43283241} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{689}{6579}\right)^{2}}=\sqrt{-\frac{89525999}{43283241}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{689}{6579}=\frac{\sqrt{89525999}i}{6579} x-\frac{689}{6579}=-\frac{\sqrt{89525999}i}{6579}
Qisqartirish.
x=\frac{689+\sqrt{89525999}i}{6579} x=\frac{-\sqrt{89525999}i+689}{6579}
\frac{689}{6579} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}