Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

130213=\left(158600+122x\right)x
122 ga 1300+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
130213=158600x+122x^{2}
158600+122x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
158600x+122x^{2}=130213
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
158600x+122x^{2}-130213=0
Ikkala tarafdan 130213 ni ayirish.
122x^{2}+158600x-130213=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-158600±\sqrt{158600^{2}-4\times 122\left(-130213\right)}}{2\times 122}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 122 ni a, 158600 ni b va -130213 ni c bilan almashtiring.
x=\frac{-158600±\sqrt{25153960000-4\times 122\left(-130213\right)}}{2\times 122}
158600 kvadratini chiqarish.
x=\frac{-158600±\sqrt{25153960000-488\left(-130213\right)}}{2\times 122}
-4 ni 122 marotabaga ko'paytirish.
x=\frac{-158600±\sqrt{25153960000+63543944}}{2\times 122}
-488 ni -130213 marotabaga ko'paytirish.
x=\frac{-158600±\sqrt{25217503944}}{2\times 122}
25153960000 ni 63543944 ga qo'shish.
x=\frac{-158600±2\sqrt{6304375986}}{2\times 122}
25217503944 ning kvadrat ildizini chiqarish.
x=\frac{-158600±2\sqrt{6304375986}}{244}
2 ni 122 marotabaga ko'paytirish.
x=\frac{2\sqrt{6304375986}-158600}{244}
x=\frac{-158600±2\sqrt{6304375986}}{244} tenglamasini yeching, bunda ± musbat. -158600 ni 2\sqrt{6304375986} ga qo'shish.
x=\frac{\sqrt{6304375986}}{122}-650
-158600+2\sqrt{6304375986} ni 244 ga bo'lish.
x=\frac{-2\sqrt{6304375986}-158600}{244}
x=\frac{-158600±2\sqrt{6304375986}}{244} tenglamasini yeching, bunda ± manfiy. -158600 dan 2\sqrt{6304375986} ni ayirish.
x=-\frac{\sqrt{6304375986}}{122}-650
-158600-2\sqrt{6304375986} ni 244 ga bo'lish.
x=\frac{\sqrt{6304375986}}{122}-650 x=-\frac{\sqrt{6304375986}}{122}-650
Tenglama yechildi.
130213=\left(158600+122x\right)x
122 ga 1300+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
130213=158600x+122x^{2}
158600+122x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
158600x+122x^{2}=130213
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
122x^{2}+158600x=130213
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{122x^{2}+158600x}{122}=\frac{130213}{122}
Ikki tarafini 122 ga bo‘ling.
x^{2}+\frac{158600}{122}x=\frac{130213}{122}
122 ga bo'lish 122 ga ko'paytirishni bekor qiladi.
x^{2}+1300x=\frac{130213}{122}
158600 ni 122 ga bo'lish.
x^{2}+1300x+650^{2}=\frac{130213}{122}+650^{2}
1300 ni bo‘lish, x shartining koeffitsienti, 2 ga 650 olish uchun. Keyin, 650 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+1300x+422500=\frac{130213}{122}+422500
650 kvadratini chiqarish.
x^{2}+1300x+422500=\frac{51675213}{122}
\frac{130213}{122} ni 422500 ga qo'shish.
\left(x+650\right)^{2}=\frac{51675213}{122}
x^{2}+1300x+422500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+650\right)^{2}}=\sqrt{\frac{51675213}{122}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+650=\frac{\sqrt{6304375986}}{122} x+650=-\frac{\sqrt{6304375986}}{122}
Qisqartirish.
x=\frac{\sqrt{6304375986}}{122}-650 x=-\frac{\sqrt{6304375986}}{122}-650
Tenglamaning ikkala tarafidan 650 ni ayirish.