x uchun yechish
x = \frac{\sqrt{1065} + 5}{26} \approx 1,447474529
x=\frac{5-\sqrt{1065}}{26}\approx -1,062859144
Grafik
Baham ko'rish
Klipbordga nusxa olish
13x^{2}-5x-20=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 13\left(-20\right)}}{2\times 13}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 13 ni a, -5 ni b va -20 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 13\left(-20\right)}}{2\times 13}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-52\left(-20\right)}}{2\times 13}
-4 ni 13 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+1040}}{2\times 13}
-52 ni -20 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{1065}}{2\times 13}
25 ni 1040 ga qo'shish.
x=\frac{5±\sqrt{1065}}{2\times 13}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{1065}}{26}
2 ni 13 marotabaga ko'paytirish.
x=\frac{\sqrt{1065}+5}{26}
x=\frac{5±\sqrt{1065}}{26} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{1065} ga qo'shish.
x=\frac{5-\sqrt{1065}}{26}
x=\frac{5±\sqrt{1065}}{26} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{1065} ni ayirish.
x=\frac{\sqrt{1065}+5}{26} x=\frac{5-\sqrt{1065}}{26}
Tenglama yechildi.
13x^{2}-5x-20=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
13x^{2}-5x-20-\left(-20\right)=-\left(-20\right)
20 ni tenglamaning ikkala tarafiga qo'shish.
13x^{2}-5x=-\left(-20\right)
O‘zidan -20 ayirilsa 0 qoladi.
13x^{2}-5x=20
0 dan -20 ni ayirish.
\frac{13x^{2}-5x}{13}=\frac{20}{13}
Ikki tarafini 13 ga bo‘ling.
x^{2}-\frac{5}{13}x=\frac{20}{13}
13 ga bo'lish 13 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{13}x+\left(-\frac{5}{26}\right)^{2}=\frac{20}{13}+\left(-\frac{5}{26}\right)^{2}
-\frac{5}{13} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{26} olish uchun. Keyin, -\frac{5}{26} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{13}x+\frac{25}{676}=\frac{20}{13}+\frac{25}{676}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{26} kvadratini chiqarish.
x^{2}-\frac{5}{13}x+\frac{25}{676}=\frac{1065}{676}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{20}{13} ni \frac{25}{676} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{26}\right)^{2}=\frac{1065}{676}
x^{2}-\frac{5}{13}x+\frac{25}{676} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{26}\right)^{2}}=\sqrt{\frac{1065}{676}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{26}=\frac{\sqrt{1065}}{26} x-\frac{5}{26}=-\frac{\sqrt{1065}}{26}
Qisqartirish.
x=\frac{\sqrt{1065}+5}{26} x=\frac{5-\sqrt{1065}}{26}
\frac{5}{26} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}