Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

13x^{2}-5x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 13\times 4}}{2\times 13}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 13 ni a, -5 ni b va 4 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 13\times 4}}{2\times 13}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-52\times 4}}{2\times 13}
-4 ni 13 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25-208}}{2\times 13}
-52 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-183}}{2\times 13}
25 ni -208 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{183}i}{2\times 13}
-183 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{183}i}{2\times 13}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{183}i}{26}
2 ni 13 marotabaga ko'paytirish.
x=\frac{5+\sqrt{183}i}{26}
x=\frac{5±\sqrt{183}i}{26} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{183} ga qo'shish.
x=\frac{-\sqrt{183}i+5}{26}
x=\frac{5±\sqrt{183}i}{26} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{183} ni ayirish.
x=\frac{5+\sqrt{183}i}{26} x=\frac{-\sqrt{183}i+5}{26}
Tenglama yechildi.
13x^{2}-5x+4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
13x^{2}-5x+4-4=-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
13x^{2}-5x=-4
O‘zidan 4 ayirilsa 0 qoladi.
\frac{13x^{2}-5x}{13}=-\frac{4}{13}
Ikki tarafini 13 ga bo‘ling.
x^{2}-\frac{5}{13}x=-\frac{4}{13}
13 ga bo'lish 13 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{13}x+\left(-\frac{5}{26}\right)^{2}=-\frac{4}{13}+\left(-\frac{5}{26}\right)^{2}
-\frac{5}{13} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{26} olish uchun. Keyin, -\frac{5}{26} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{13}x+\frac{25}{676}=-\frac{4}{13}+\frac{25}{676}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{26} kvadratini chiqarish.
x^{2}-\frac{5}{13}x+\frac{25}{676}=-\frac{183}{676}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{13} ni \frac{25}{676} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{26}\right)^{2}=-\frac{183}{676}
x^{2}-\frac{5}{13}x+\frac{25}{676} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{26}\right)^{2}}=\sqrt{-\frac{183}{676}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{26}=\frac{\sqrt{183}i}{26} x-\frac{5}{26}=-\frac{\sqrt{183}i}{26}
Qisqartirish.
x=\frac{5+\sqrt{183}i}{26} x=\frac{-\sqrt{183}i+5}{26}
\frac{5}{26} ni tenglamaning ikkala tarafiga qo'shish.