Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

128\left(1+x\right)^{2}=200
\left(1+x\right)^{2} hosil qilish uchun 1+x va 1+x ni ko'paytirish.
128\left(1+2x+x^{2}\right)=200
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+x\right)^{2} kengaytirilishi uchun ishlating.
128+256x+128x^{2}=200
128 ga 1+2x+x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
128+256x+128x^{2}-200=0
Ikkala tarafdan 200 ni ayirish.
-72+256x+128x^{2}=0
-72 olish uchun 128 dan 200 ni ayirish.
128x^{2}+256x-72=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-256±\sqrt{256^{2}-4\times 128\left(-72\right)}}{2\times 128}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 128 ni a, 256 ni b va -72 ni c bilan almashtiring.
x=\frac{-256±\sqrt{65536-4\times 128\left(-72\right)}}{2\times 128}
256 kvadratini chiqarish.
x=\frac{-256±\sqrt{65536-512\left(-72\right)}}{2\times 128}
-4 ni 128 marotabaga ko'paytirish.
x=\frac{-256±\sqrt{65536+36864}}{2\times 128}
-512 ni -72 marotabaga ko'paytirish.
x=\frac{-256±\sqrt{102400}}{2\times 128}
65536 ni 36864 ga qo'shish.
x=\frac{-256±320}{2\times 128}
102400 ning kvadrat ildizini chiqarish.
x=\frac{-256±320}{256}
2 ni 128 marotabaga ko'paytirish.
x=\frac{64}{256}
x=\frac{-256±320}{256} tenglamasini yeching, bunda ± musbat. -256 ni 320 ga qo'shish.
x=\frac{1}{4}
\frac{64}{256} ulushini 64 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{576}{256}
x=\frac{-256±320}{256} tenglamasini yeching, bunda ± manfiy. -256 dan 320 ni ayirish.
x=-\frac{9}{4}
\frac{-576}{256} ulushini 64 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{4} x=-\frac{9}{4}
Tenglama yechildi.
128\left(1+x\right)^{2}=200
\left(1+x\right)^{2} hosil qilish uchun 1+x va 1+x ni ko'paytirish.
128\left(1+2x+x^{2}\right)=200
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+x\right)^{2} kengaytirilishi uchun ishlating.
128+256x+128x^{2}=200
128 ga 1+2x+x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
256x+128x^{2}=200-128
Ikkala tarafdan 128 ni ayirish.
256x+128x^{2}=72
72 olish uchun 200 dan 128 ni ayirish.
128x^{2}+256x=72
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{128x^{2}+256x}{128}=\frac{72}{128}
Ikki tarafini 128 ga bo‘ling.
x^{2}+\frac{256}{128}x=\frac{72}{128}
128 ga bo'lish 128 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{72}{128}
256 ni 128 ga bo'lish.
x^{2}+2x=\frac{9}{16}
\frac{72}{128} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+2x+1^{2}=\frac{9}{16}+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=\frac{9}{16}+1
1 kvadratini chiqarish.
x^{2}+2x+1=\frac{25}{16}
\frac{9}{16} ni 1 ga qo'shish.
\left(x+1\right)^{2}=\frac{25}{16}
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{25}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\frac{5}{4} x+1=-\frac{5}{4}
Qisqartirish.
x=\frac{1}{4} x=-\frac{9}{4}
Tenglamaning ikkala tarafidan 1 ni ayirish.