x uchun yechish
x=17
x=28
Grafik
Baham ko'rish
Klipbordga nusxa olish
126=45x-x^{2}-350
x-10 ga 35-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
45x-x^{2}-350=126
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
45x-x^{2}-350-126=0
Ikkala tarafdan 126 ni ayirish.
45x-x^{2}-476=0
-476 olish uchun -350 dan 126 ni ayirish.
-x^{2}+45x-476=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-45±\sqrt{45^{2}-4\left(-1\right)\left(-476\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 45 ni b va -476 ni c bilan almashtiring.
x=\frac{-45±\sqrt{2025-4\left(-1\right)\left(-476\right)}}{2\left(-1\right)}
45 kvadratini chiqarish.
x=\frac{-45±\sqrt{2025+4\left(-476\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-45±\sqrt{2025-1904}}{2\left(-1\right)}
4 ni -476 marotabaga ko'paytirish.
x=\frac{-45±\sqrt{121}}{2\left(-1\right)}
2025 ni -1904 ga qo'shish.
x=\frac{-45±11}{2\left(-1\right)}
121 ning kvadrat ildizini chiqarish.
x=\frac{-45±11}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\frac{34}{-2}
x=\frac{-45±11}{-2} tenglamasini yeching, bunda ± musbat. -45 ni 11 ga qo'shish.
x=17
-34 ni -2 ga bo'lish.
x=-\frac{56}{-2}
x=\frac{-45±11}{-2} tenglamasini yeching, bunda ± manfiy. -45 dan 11 ni ayirish.
x=28
-56 ni -2 ga bo'lish.
x=17 x=28
Tenglama yechildi.
126=45x-x^{2}-350
x-10 ga 35-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
45x-x^{2}-350=126
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
45x-x^{2}=126+350
350 ni ikki tarafga qo’shing.
45x-x^{2}=476
476 olish uchun 126 va 350'ni qo'shing.
-x^{2}+45x=476
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+45x}{-1}=\frac{476}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{45}{-1}x=\frac{476}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-45x=\frac{476}{-1}
45 ni -1 ga bo'lish.
x^{2}-45x=-476
476 ni -1 ga bo'lish.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=-476+\left(-\frac{45}{2}\right)^{2}
-45 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{45}{2} olish uchun. Keyin, -\frac{45}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-45x+\frac{2025}{4}=-476+\frac{2025}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{45}{2} kvadratini chiqarish.
x^{2}-45x+\frac{2025}{4}=\frac{121}{4}
-476 ni \frac{2025}{4} ga qo'shish.
\left(x-\frac{45}{2}\right)^{2}=\frac{121}{4}
x^{2}-45x+\frac{2025}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{45}{2}=\frac{11}{2} x-\frac{45}{2}=-\frac{11}{2}
Qisqartirish.
x=28 x=17
\frac{45}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}