x uchun yechish (complex solution)
x=\frac{39+4\sqrt{11194}i}{25}\approx 1,56+16,92827221i
x=\frac{-4\sqrt{11194}i+39}{25}\approx 1,56-16,92827221i
Grafik
Baham ko'rish
Klipbordga nusxa olish
125x^{2}-390x+36125=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-390\right)±\sqrt{\left(-390\right)^{2}-4\times 125\times 36125}}{2\times 125}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 125 ni a, -390 ni b va 36125 ni c bilan almashtiring.
x=\frac{-\left(-390\right)±\sqrt{152100-4\times 125\times 36125}}{2\times 125}
-390 kvadratini chiqarish.
x=\frac{-\left(-390\right)±\sqrt{152100-500\times 36125}}{2\times 125}
-4 ni 125 marotabaga ko'paytirish.
x=\frac{-\left(-390\right)±\sqrt{152100-18062500}}{2\times 125}
-500 ni 36125 marotabaga ko'paytirish.
x=\frac{-\left(-390\right)±\sqrt{-17910400}}{2\times 125}
152100 ni -18062500 ga qo'shish.
x=\frac{-\left(-390\right)±40\sqrt{11194}i}{2\times 125}
-17910400 ning kvadrat ildizini chiqarish.
x=\frac{390±40\sqrt{11194}i}{2\times 125}
-390 ning teskarisi 390 ga teng.
x=\frac{390±40\sqrt{11194}i}{250}
2 ni 125 marotabaga ko'paytirish.
x=\frac{390+40\sqrt{11194}i}{250}
x=\frac{390±40\sqrt{11194}i}{250} tenglamasini yeching, bunda ± musbat. 390 ni 40i\sqrt{11194} ga qo'shish.
x=\frac{39+4\sqrt{11194}i}{25}
390+40i\sqrt{11194} ni 250 ga bo'lish.
x=\frac{-40\sqrt{11194}i+390}{250}
x=\frac{390±40\sqrt{11194}i}{250} tenglamasini yeching, bunda ± manfiy. 390 dan 40i\sqrt{11194} ni ayirish.
x=\frac{-4\sqrt{11194}i+39}{25}
390-40i\sqrt{11194} ni 250 ga bo'lish.
x=\frac{39+4\sqrt{11194}i}{25} x=\frac{-4\sqrt{11194}i+39}{25}
Tenglama yechildi.
125x^{2}-390x+36125=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
125x^{2}-390x+36125-36125=-36125
Tenglamaning ikkala tarafidan 36125 ni ayirish.
125x^{2}-390x=-36125
O‘zidan 36125 ayirilsa 0 qoladi.
\frac{125x^{2}-390x}{125}=-\frac{36125}{125}
Ikki tarafini 125 ga bo‘ling.
x^{2}+\left(-\frac{390}{125}\right)x=-\frac{36125}{125}
125 ga bo'lish 125 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{78}{25}x=-\frac{36125}{125}
\frac{-390}{125} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{78}{25}x=-289
-36125 ni 125 ga bo'lish.
x^{2}-\frac{78}{25}x+\left(-\frac{39}{25}\right)^{2}=-289+\left(-\frac{39}{25}\right)^{2}
-\frac{78}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{39}{25} olish uchun. Keyin, -\frac{39}{25} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{78}{25}x+\frac{1521}{625}=-289+\frac{1521}{625}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{39}{25} kvadratini chiqarish.
x^{2}-\frac{78}{25}x+\frac{1521}{625}=-\frac{179104}{625}
-289 ni \frac{1521}{625} ga qo'shish.
\left(x-\frac{39}{25}\right)^{2}=-\frac{179104}{625}
x^{2}-\frac{78}{25}x+\frac{1521}{625} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{39}{25}\right)^{2}}=\sqrt{-\frac{179104}{625}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{39}{25}=\frac{4\sqrt{11194}i}{25} x-\frac{39}{25}=-\frac{4\sqrt{11194}i}{25}
Qisqartirish.
x=\frac{39+4\sqrt{11194}i}{25} x=\frac{-4\sqrt{11194}i+39}{25}
\frac{39}{25} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}