Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

25x^{2}-1=0
Ikki tarafini 5 ga bo‘ling.
\left(5x-1\right)\left(5x+1\right)=0
Hisoblang: 25x^{2}-1. 25x^{2}-1 ni \left(5x\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{5} x=-\frac{1}{5}
Tenglamani yechish uchun 5x-1=0 va 5x+1=0 ni yeching.
125x^{2}=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{5}{125}
Ikki tarafini 125 ga bo‘ling.
x^{2}=\frac{1}{25}
\frac{5}{125} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{5} x=-\frac{1}{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
125x^{2}-5=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 125\left(-5\right)}}{2\times 125}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 125 ni a, 0 ni b va -5 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 125\left(-5\right)}}{2\times 125}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-500\left(-5\right)}}{2\times 125}
-4 ni 125 marotabaga ko'paytirish.
x=\frac{0±\sqrt{2500}}{2\times 125}
-500 ni -5 marotabaga ko'paytirish.
x=\frac{0±50}{2\times 125}
2500 ning kvadrat ildizini chiqarish.
x=\frac{0±50}{250}
2 ni 125 marotabaga ko'paytirish.
x=\frac{1}{5}
x=\frac{0±50}{250} tenglamasini yeching, bunda ± musbat. \frac{50}{250} ulushini 50 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{1}{5}
x=\frac{0±50}{250} tenglamasini yeching, bunda ± manfiy. \frac{-50}{250} ulushini 50 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{5} x=-\frac{1}{5}
Tenglama yechildi.