Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

125x^{2}-11x+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 125\times 10}}{2\times 125}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 125 ni a, -11 ni b va 10 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 125\times 10}}{2\times 125}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121-500\times 10}}{2\times 125}
-4 ni 125 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121-5000}}{2\times 125}
-500 ni 10 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{-4879}}{2\times 125}
121 ni -5000 ga qo'shish.
x=\frac{-\left(-11\right)±\sqrt{4879}i}{2\times 125}
-4879 ning kvadrat ildizini chiqarish.
x=\frac{11±\sqrt{4879}i}{2\times 125}
-11 ning teskarisi 11 ga teng.
x=\frac{11±\sqrt{4879}i}{250}
2 ni 125 marotabaga ko'paytirish.
x=\frac{11+\sqrt{4879}i}{250}
x=\frac{11±\sqrt{4879}i}{250} tenglamasini yeching, bunda ± musbat. 11 ni i\sqrt{4879} ga qo'shish.
x=\frac{-\sqrt{4879}i+11}{250}
x=\frac{11±\sqrt{4879}i}{250} tenglamasini yeching, bunda ± manfiy. 11 dan i\sqrt{4879} ni ayirish.
x=\frac{11+\sqrt{4879}i}{250} x=\frac{-\sqrt{4879}i+11}{250}
Tenglama yechildi.
125x^{2}-11x+10=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
125x^{2}-11x+10-10=-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
125x^{2}-11x=-10
O‘zidan 10 ayirilsa 0 qoladi.
\frac{125x^{2}-11x}{125}=-\frac{10}{125}
Ikki tarafini 125 ga bo‘ling.
x^{2}-\frac{11}{125}x=-\frac{10}{125}
125 ga bo'lish 125 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{125}x=-\frac{2}{25}
\frac{-10}{125} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{11}{125}x+\left(-\frac{11}{250}\right)^{2}=-\frac{2}{25}+\left(-\frac{11}{250}\right)^{2}
-\frac{11}{125} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{250} olish uchun. Keyin, -\frac{11}{250} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{125}x+\frac{121}{62500}=-\frac{2}{25}+\frac{121}{62500}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{250} kvadratini chiqarish.
x^{2}-\frac{11}{125}x+\frac{121}{62500}=-\frac{4879}{62500}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{25} ni \frac{121}{62500} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{11}{250}\right)^{2}=-\frac{4879}{62500}
x^{2}-\frac{11}{125}x+\frac{121}{62500} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{250}\right)^{2}}=\sqrt{-\frac{4879}{62500}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{250}=\frac{\sqrt{4879}i}{250} x-\frac{11}{250}=-\frac{\sqrt{4879}i}{250}
Qisqartirish.
x=\frac{11+\sqrt{4879}i}{250} x=\frac{-\sqrt{4879}i+11}{250}
\frac{11}{250} ni tenglamaning ikkala tarafiga qo'shish.