x uchun yechish
x=\frac{\sqrt{1581}+9}{125}\approx 0,390094326
x=\frac{9-\sqrt{1581}}{125}\approx -0,246094326
Grafik
Baham ko'rish
Klipbordga nusxa olish
125x^{2}+x-12-19x=0
Ikkala tarafdan 19x ni ayirish.
125x^{2}-18x-12=0
-18x ni olish uchun x va -19x ni birlashtirish.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 125\left(-12\right)}}{2\times 125}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 125 ni a, -18 ni b va -12 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 125\left(-12\right)}}{2\times 125}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-500\left(-12\right)}}{2\times 125}
-4 ni 125 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{324+6000}}{2\times 125}
-500 ni -12 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{6324}}{2\times 125}
324 ni 6000 ga qo'shish.
x=\frac{-\left(-18\right)±2\sqrt{1581}}{2\times 125}
6324 ning kvadrat ildizini chiqarish.
x=\frac{18±2\sqrt{1581}}{2\times 125}
-18 ning teskarisi 18 ga teng.
x=\frac{18±2\sqrt{1581}}{250}
2 ni 125 marotabaga ko'paytirish.
x=\frac{2\sqrt{1581}+18}{250}
x=\frac{18±2\sqrt{1581}}{250} tenglamasini yeching, bunda ± musbat. 18 ni 2\sqrt{1581} ga qo'shish.
x=\frac{\sqrt{1581}+9}{125}
18+2\sqrt{1581} ni 250 ga bo'lish.
x=\frac{18-2\sqrt{1581}}{250}
x=\frac{18±2\sqrt{1581}}{250} tenglamasini yeching, bunda ± manfiy. 18 dan 2\sqrt{1581} ni ayirish.
x=\frac{9-\sqrt{1581}}{125}
18-2\sqrt{1581} ni 250 ga bo'lish.
x=\frac{\sqrt{1581}+9}{125} x=\frac{9-\sqrt{1581}}{125}
Tenglama yechildi.
125x^{2}+x-12-19x=0
Ikkala tarafdan 19x ni ayirish.
125x^{2}-18x-12=0
-18x ni olish uchun x va -19x ni birlashtirish.
125x^{2}-18x=12
12 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{125x^{2}-18x}{125}=\frac{12}{125}
Ikki tarafini 125 ga bo‘ling.
x^{2}-\frac{18}{125}x=\frac{12}{125}
125 ga bo'lish 125 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{18}{125}x+\left(-\frac{9}{125}\right)^{2}=\frac{12}{125}+\left(-\frac{9}{125}\right)^{2}
-\frac{18}{125} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{125} olish uchun. Keyin, -\frac{9}{125} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{18}{125}x+\frac{81}{15625}=\frac{12}{125}+\frac{81}{15625}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{125} kvadratini chiqarish.
x^{2}-\frac{18}{125}x+\frac{81}{15625}=\frac{1581}{15625}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{12}{125} ni \frac{81}{15625} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{125}\right)^{2}=\frac{1581}{15625}
x^{2}-\frac{18}{125}x+\frac{81}{15625} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{125}\right)^{2}}=\sqrt{\frac{1581}{15625}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{125}=\frac{\sqrt{1581}}{125} x-\frac{9}{125}=-\frac{\sqrt{1581}}{125}
Qisqartirish.
x=\frac{\sqrt{1581}+9}{125} x=\frac{9-\sqrt{1581}}{125}
\frac{9}{125} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}