Asosiy tarkibga oʻtish
h uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(11h-2\right)\left(11h+2\right)=0
Hisoblang: 121h^{2}-4. 121h^{2}-4 ni \left(11h\right)^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
h=\frac{2}{11} h=-\frac{2}{11}
Tenglamani yechish uchun 11h-2=0 va 11h+2=0 ni yeching.
121h^{2}=4
4 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
h^{2}=\frac{4}{121}
Ikki tarafini 121 ga bo‘ling.
h=\frac{2}{11} h=-\frac{2}{11}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
121h^{2}-4=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
h=\frac{0±\sqrt{0^{2}-4\times 121\left(-4\right)}}{2\times 121}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 121 ni a, 0 ni b va -4 ni c bilan almashtiring.
h=\frac{0±\sqrt{-4\times 121\left(-4\right)}}{2\times 121}
0 kvadratini chiqarish.
h=\frac{0±\sqrt{-484\left(-4\right)}}{2\times 121}
-4 ni 121 marotabaga ko'paytirish.
h=\frac{0±\sqrt{1936}}{2\times 121}
-484 ni -4 marotabaga ko'paytirish.
h=\frac{0±44}{2\times 121}
1936 ning kvadrat ildizini chiqarish.
h=\frac{0±44}{242}
2 ni 121 marotabaga ko'paytirish.
h=\frac{2}{11}
h=\frac{0±44}{242} tenglamasini yeching, bunda ± musbat. \frac{44}{242} ulushini 22 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
h=-\frac{2}{11}
h=\frac{0±44}{242} tenglamasini yeching, bunda ± manfiy. \frac{-44}{242} ulushini 22 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
h=\frac{2}{11} h=-\frac{2}{11}
Tenglama yechildi.