x uchun yechish
x\geq 13
Grafik
Baham ko'rish
Klipbordga nusxa olish
2400x+1600x+2000\left(80-x-2x\right)\leq 134000
2400 hosil qilish uchun 1200 va 2 ni ko'paytirish.
4000x+2000\left(80-x-2x\right)\leq 134000
4000x ni olish uchun 2400x va 1600x ni birlashtirish.
4000x+2000\left(80-3x\right)\leq 134000
-3x ni olish uchun -x va -2x ni birlashtirish.
4000x+160000-6000x\leq 134000
2000 ga 80-3x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2000x+160000\leq 134000
-2000x ni olish uchun 4000x va -6000x ni birlashtirish.
-2000x\leq 134000-160000
Ikkala tarafdan 160000 ni ayirish.
-2000x\leq -26000
-26000 olish uchun 134000 dan 160000 ni ayirish.
x\geq \frac{-26000}{-2000}
Ikki tarafini -2000 ga bo‘ling. -2000 manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
x\geq 13
13 ni olish uchun -26000 ni -2000 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}