x uchun yechish
x=-\frac{5x_{16}}{2}+\frac{7291}{48}
x_16 uchun yechish
x_{16}=-\frac{2x}{5}+\frac{7291}{120}
Grafik
Baham ko'rish
Klipbordga nusxa olish
120x_{16}+48x-5760=1531
x-120 ga 48 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
48x-5760=1531-120x_{16}
Ikkala tarafdan 120x_{16} ni ayirish.
48x=1531-120x_{16}+5760
5760 ni ikki tarafga qo’shing.
48x=7291-120x_{16}
7291 olish uchun 1531 va 5760'ni qo'shing.
\frac{48x}{48}=\frac{7291-120x_{16}}{48}
Ikki tarafini 48 ga bo‘ling.
x=\frac{7291-120x_{16}}{48}
48 ga bo'lish 48 ga ko'paytirishni bekor qiladi.
x=-\frac{5x_{16}}{2}+\frac{7291}{48}
7291-120x_{16} ni 48 ga bo'lish.
120x_{16}+48x-5760=1531
x-120 ga 48 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
120x_{16}-5760=1531-48x
Ikkala tarafdan 48x ni ayirish.
120x_{16}=1531-48x+5760
5760 ni ikki tarafga qo’shing.
120x_{16}=7291-48x
7291 olish uchun 1531 va 5760'ni qo'shing.
\frac{120x_{16}}{120}=\frac{7291-48x}{120}
Ikki tarafini 120 ga bo‘ling.
x_{16}=\frac{7291-48x}{120}
120 ga bo'lish 120 ga ko'paytirishni bekor qiladi.
x_{16}=-\frac{2x}{5}+\frac{7291}{120}
7291-48x ni 120 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}