x uchun yechish
x = -\frac{230}{3} = -76\frac{2}{3} \approx -76,666666667
x=10
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}+200x-2300=0
Ikki tarafini 40 ga bo‘ling.
a+b=200 ab=3\left(-2300\right)=-6900
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 3x^{2}+ax+bx-2300 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,6900 -2,3450 -3,2300 -4,1725 -5,1380 -6,1150 -10,690 -12,575 -15,460 -20,345 -23,300 -25,276 -30,230 -46,150 -50,138 -60,115 -69,100 -75,92
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -6900-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+6900=6899 -2+3450=3448 -3+2300=2297 -4+1725=1721 -5+1380=1375 -6+1150=1144 -10+690=680 -12+575=563 -15+460=445 -20+345=325 -23+300=277 -25+276=251 -30+230=200 -46+150=104 -50+138=88 -60+115=55 -69+100=31 -75+92=17
Har bir juftlik yigʻindisini hisoblang.
a=-30 b=230
Yechim – 200 yigʻindisini beruvchi juftlik.
\left(3x^{2}-30x\right)+\left(230x-2300\right)
3x^{2}+200x-2300 ni \left(3x^{2}-30x\right)+\left(230x-2300\right) sifatida qaytadan yozish.
3x\left(x-10\right)+230\left(x-10\right)
Birinchi guruhda 3x ni va ikkinchi guruhda 230 ni faktordan chiqaring.
\left(x-10\right)\left(3x+230\right)
Distributiv funktsiyasidan foydalangan holda x-10 umumiy terminini chiqaring.
x=10 x=-\frac{230}{3}
Tenglamani yechish uchun x-10=0 va 3x+230=0 ni yeching.
120x^{2}+8000x-92000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8000±\sqrt{8000^{2}-4\times 120\left(-92000\right)}}{2\times 120}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 120 ni a, 8000 ni b va -92000 ni c bilan almashtiring.
x=\frac{-8000±\sqrt{64000000-4\times 120\left(-92000\right)}}{2\times 120}
8000 kvadratini chiqarish.
x=\frac{-8000±\sqrt{64000000-480\left(-92000\right)}}{2\times 120}
-4 ni 120 marotabaga ko'paytirish.
x=\frac{-8000±\sqrt{64000000+44160000}}{2\times 120}
-480 ni -92000 marotabaga ko'paytirish.
x=\frac{-8000±\sqrt{108160000}}{2\times 120}
64000000 ni 44160000 ga qo'shish.
x=\frac{-8000±10400}{2\times 120}
108160000 ning kvadrat ildizini chiqarish.
x=\frac{-8000±10400}{240}
2 ni 120 marotabaga ko'paytirish.
x=\frac{2400}{240}
x=\frac{-8000±10400}{240} tenglamasini yeching, bunda ± musbat. -8000 ni 10400 ga qo'shish.
x=10
2400 ni 240 ga bo'lish.
x=-\frac{18400}{240}
x=\frac{-8000±10400}{240} tenglamasini yeching, bunda ± manfiy. -8000 dan 10400 ni ayirish.
x=-\frac{230}{3}
\frac{-18400}{240} ulushini 80 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=10 x=-\frac{230}{3}
Tenglama yechildi.
120x^{2}+8000x-92000=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
120x^{2}+8000x-92000-\left(-92000\right)=-\left(-92000\right)
92000 ni tenglamaning ikkala tarafiga qo'shish.
120x^{2}+8000x=-\left(-92000\right)
O‘zidan -92000 ayirilsa 0 qoladi.
120x^{2}+8000x=92000
0 dan -92000 ni ayirish.
\frac{120x^{2}+8000x}{120}=\frac{92000}{120}
Ikki tarafini 120 ga bo‘ling.
x^{2}+\frac{8000}{120}x=\frac{92000}{120}
120 ga bo'lish 120 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{200}{3}x=\frac{92000}{120}
\frac{8000}{120} ulushini 40 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{200}{3}x=\frac{2300}{3}
\frac{92000}{120} ulushini 40 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{200}{3}x+\left(\frac{100}{3}\right)^{2}=\frac{2300}{3}+\left(\frac{100}{3}\right)^{2}
\frac{200}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{100}{3} olish uchun. Keyin, \frac{100}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{2300}{3}+\frac{10000}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{100}{3} kvadratini chiqarish.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{16900}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2300}{3} ni \frac{10000}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{100}{3}\right)^{2}=\frac{16900}{9}
x^{2}+\frac{200}{3}x+\frac{10000}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{100}{3}\right)^{2}}=\sqrt{\frac{16900}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{100}{3}=\frac{130}{3} x+\frac{100}{3}=-\frac{130}{3}
Qisqartirish.
x=10 x=-\frac{230}{3}
Tenglamaning ikkala tarafidan \frac{100}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}