Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

12x^{2}-12x-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 12\left(-6\right)}}{2\times 12}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 12 ni a, -12 ni b va -6 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 12\left(-6\right)}}{2\times 12}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-48\left(-6\right)}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+288}}{2\times 12}
-48 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{432}}{2\times 12}
144 ni 288 ga qo'shish.
x=\frac{-\left(-12\right)±12\sqrt{3}}{2\times 12}
432 ning kvadrat ildizini chiqarish.
x=\frac{12±12\sqrt{3}}{2\times 12}
-12 ning teskarisi 12 ga teng.
x=\frac{12±12\sqrt{3}}{24}
2 ni 12 marotabaga ko'paytirish.
x=\frac{12\sqrt{3}+12}{24}
x=\frac{12±12\sqrt{3}}{24} tenglamasini yeching, bunda ± musbat. 12 ni 12\sqrt{3} ga qo'shish.
x=\frac{\sqrt{3}+1}{2}
12+12\sqrt{3} ni 24 ga bo'lish.
x=\frac{12-12\sqrt{3}}{24}
x=\frac{12±12\sqrt{3}}{24} tenglamasini yeching, bunda ± manfiy. 12 dan 12\sqrt{3} ni ayirish.
x=\frac{1-\sqrt{3}}{2}
12-12\sqrt{3} ni 24 ga bo'lish.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
Tenglama yechildi.
12x^{2}-12x-6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
12x^{2}-12x-6-\left(-6\right)=-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
12x^{2}-12x=-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
12x^{2}-12x=6
0 dan -6 ni ayirish.
\frac{12x^{2}-12x}{12}=\frac{6}{12}
Ikki tarafini 12 ga bo‘ling.
x^{2}+\left(-\frac{12}{12}\right)x=\frac{6}{12}
12 ga bo'lish 12 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{6}{12}
-12 ni 12 ga bo'lish.
x^{2}-x=\frac{1}{2}
\frac{6}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{3}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{3}}{2} x-\frac{1}{2}=-\frac{\sqrt{3}}{2}
Qisqartirish.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.