Omil
\left(4x-3\right)\left(3x+4\right)
Baholash
\left(4x-3\right)\left(3x+4\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=7 ab=12\left(-12\right)=-144
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 12x^{2}+ax+bx-12 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -144-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
Har bir juftlik yigʻindisini hisoblang.
a=-9 b=16
Yechim – 7 yigʻindisini beruvchi juftlik.
\left(12x^{2}-9x\right)+\left(16x-12\right)
12x^{2}+7x-12 ni \left(12x^{2}-9x\right)+\left(16x-12\right) sifatida qaytadan yozish.
3x\left(4x-3\right)+4\left(4x-3\right)
Birinchi guruhda 3x ni va ikkinchi guruhda 4 ni faktordan chiqaring.
\left(4x-3\right)\left(3x+4\right)
Distributiv funktsiyasidan foydalangan holda 4x-3 umumiy terminini chiqaring.
12x^{2}+7x-12=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-7±\sqrt{7^{2}-4\times 12\left(-12\right)}}{2\times 12}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{49-4\times 12\left(-12\right)}}{2\times 12}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-48\left(-12\right)}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+576}}{2\times 12}
-48 ni -12 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{625}}{2\times 12}
49 ni 576 ga qo'shish.
x=\frac{-7±25}{2\times 12}
625 ning kvadrat ildizini chiqarish.
x=\frac{-7±25}{24}
2 ni 12 marotabaga ko'paytirish.
x=\frac{18}{24}
x=\frac{-7±25}{24} tenglamasini yeching, bunda ± musbat. -7 ni 25 ga qo'shish.
x=\frac{3}{4}
\frac{18}{24} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{32}{24}
x=\frac{-7±25}{24} tenglamasini yeching, bunda ± manfiy. -7 dan 25 ni ayirish.
x=-\frac{4}{3}
\frac{-32}{24} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
12x^{2}+7x-12=12\left(x-\frac{3}{4}\right)\left(x-\left(-\frac{4}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{3}{4} ga va x_{2} uchun -\frac{4}{3} ga bo‘ling.
12x^{2}+7x-12=12\left(x-\frac{3}{4}\right)\left(x+\frac{4}{3}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
12x^{2}+7x-12=12\times \frac{4x-3}{4}\left(x+\frac{4}{3}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{3}{4} ni x dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
12x^{2}+7x-12=12\times \frac{4x-3}{4}\times \frac{3x+4}{3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{3} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
12x^{2}+7x-12=12\times \frac{\left(4x-3\right)\left(3x+4\right)}{4\times 3}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{4x-3}{4} ni \frac{3x+4}{3} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
12x^{2}+7x-12=12\times \frac{\left(4x-3\right)\left(3x+4\right)}{12}
4 ni 3 marotabaga ko'paytirish.
12x^{2}+7x-12=\left(4x-3\right)\left(3x+4\right)
12 va 12 ichida eng katta umumiy 12 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}