Omil
\left(4t-5\right)\left(3t+2\right)
Baholash
\left(4t-5\right)\left(3t+2\right)
Viktorina
Polynomial
12 t ^ { 2 } - 7 t - 10
Baham ko'rish
Klipbordga nusxa olish
a+b=-7 ab=12\left(-10\right)=-120
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 12t^{2}+at+bt-10 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -120-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Har bir juftlik yigʻindisini hisoblang.
a=-15 b=8
Yechim – -7 yigʻindisini beruvchi juftlik.
\left(12t^{2}-15t\right)+\left(8t-10\right)
12t^{2}-7t-10 ni \left(12t^{2}-15t\right)+\left(8t-10\right) sifatida qaytadan yozish.
3t\left(4t-5\right)+2\left(4t-5\right)
Birinchi guruhda 3t ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(4t-5\right)\left(3t+2\right)
Distributiv funktsiyasidan foydalangan holda 4t-5 umumiy terminini chiqaring.
12t^{2}-7t-10=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12\left(-10\right)}}{2\times 12}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-7\right)±\sqrt{49-4\times 12\left(-10\right)}}{2\times 12}
-7 kvadratini chiqarish.
t=\frac{-\left(-7\right)±\sqrt{49-48\left(-10\right)}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
t=\frac{-\left(-7\right)±\sqrt{49+480}}{2\times 12}
-48 ni -10 marotabaga ko'paytirish.
t=\frac{-\left(-7\right)±\sqrt{529}}{2\times 12}
49 ni 480 ga qo'shish.
t=\frac{-\left(-7\right)±23}{2\times 12}
529 ning kvadrat ildizini chiqarish.
t=\frac{7±23}{2\times 12}
-7 ning teskarisi 7 ga teng.
t=\frac{7±23}{24}
2 ni 12 marotabaga ko'paytirish.
t=\frac{30}{24}
t=\frac{7±23}{24} tenglamasini yeching, bunda ± musbat. 7 ni 23 ga qo'shish.
t=\frac{5}{4}
\frac{30}{24} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t=-\frac{16}{24}
t=\frac{7±23}{24} tenglamasini yeching, bunda ± manfiy. 7 dan 23 ni ayirish.
t=-\frac{2}{3}
\frac{-16}{24} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
12t^{2}-7t-10=12\left(t-\frac{5}{4}\right)\left(t-\left(-\frac{2}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{5}{4} ga va x_{2} uchun -\frac{2}{3} ga bo‘ling.
12t^{2}-7t-10=12\left(t-\frac{5}{4}\right)\left(t+\frac{2}{3}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
12t^{2}-7t-10=12\times \frac{4t-5}{4}\left(t+\frac{2}{3}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{5}{4} ni t dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
12t^{2}-7t-10=12\times \frac{4t-5}{4}\times \frac{3t+2}{3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{3} ni t ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
12t^{2}-7t-10=12\times \frac{\left(4t-5\right)\left(3t+2\right)}{4\times 3}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{4t-5}{4} ni \frac{3t+2}{3} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
12t^{2}-7t-10=12\times \frac{\left(4t-5\right)\left(3t+2\right)}{12}
4 ni 3 marotabaga ko'paytirish.
12t^{2}-7t-10=\left(4t-5\right)\left(3t+2\right)
12 va 12 ichida eng katta umumiy 12 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}