Omil
\left(4a-9\right)\left(3a+4\right)
Baholash
\left(4a-9\right)\left(3a+4\right)
Baham ko'rish
Klipbordga nusxa olish
p+q=-11 pq=12\left(-36\right)=-432
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 12a^{2}+pa+qa-36 sifatida qayta yozilishi kerak. p va q ni topish uchun yechiladigan tizimni sozlang.
1,-432 2,-216 3,-144 4,-108 6,-72 8,-54 9,-48 12,-36 16,-27 18,-24
pq manfiy boʻlganda, p va q da qarama-qarshi belgilar bor. p+q manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -432-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-432=-431 2-216=-214 3-144=-141 4-108=-104 6-72=-66 8-54=-46 9-48=-39 12-36=-24 16-27=-11 18-24=-6
Har bir juftlik yigʻindisini hisoblang.
p=-27 q=16
Yechim – -11 yigʻindisini beruvchi juftlik.
\left(12a^{2}-27a\right)+\left(16a-36\right)
12a^{2}-11a-36 ni \left(12a^{2}-27a\right)+\left(16a-36\right) sifatida qaytadan yozish.
3a\left(4a-9\right)+4\left(4a-9\right)
Birinchi guruhda 3a ni va ikkinchi guruhda 4 ni faktordan chiqaring.
\left(4a-9\right)\left(3a+4\right)
Distributiv funktsiyasidan foydalangan holda 4a-9 umumiy terminini chiqaring.
12a^{2}-11a-36=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 12\left(-36\right)}}{2\times 12}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-11\right)±\sqrt{121-4\times 12\left(-36\right)}}{2\times 12}
-11 kvadratini chiqarish.
a=\frac{-\left(-11\right)±\sqrt{121-48\left(-36\right)}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
a=\frac{-\left(-11\right)±\sqrt{121+1728}}{2\times 12}
-48 ni -36 marotabaga ko'paytirish.
a=\frac{-\left(-11\right)±\sqrt{1849}}{2\times 12}
121 ni 1728 ga qo'shish.
a=\frac{-\left(-11\right)±43}{2\times 12}
1849 ning kvadrat ildizini chiqarish.
a=\frac{11±43}{2\times 12}
-11 ning teskarisi 11 ga teng.
a=\frac{11±43}{24}
2 ni 12 marotabaga ko'paytirish.
a=\frac{54}{24}
a=\frac{11±43}{24} tenglamasini yeching, bunda ± musbat. 11 ni 43 ga qo'shish.
a=\frac{9}{4}
\frac{54}{24} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
a=-\frac{32}{24}
a=\frac{11±43}{24} tenglamasini yeching, bunda ± manfiy. 11 dan 43 ni ayirish.
a=-\frac{4}{3}
\frac{-32}{24} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
12a^{2}-11a-36=12\left(a-\frac{9}{4}\right)\left(a-\left(-\frac{4}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{9}{4} ga va x_{2} uchun -\frac{4}{3} ga bo‘ling.
12a^{2}-11a-36=12\left(a-\frac{9}{4}\right)\left(a+\frac{4}{3}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
12a^{2}-11a-36=12\times \frac{4a-9}{4}\left(a+\frac{4}{3}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{9}{4} ni a dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
12a^{2}-11a-36=12\times \frac{4a-9}{4}\times \frac{3a+4}{3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{3} ni a ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
12a^{2}-11a-36=12\times \frac{\left(4a-9\right)\left(3a+4\right)}{4\times 3}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{4a-9}{4} ni \frac{3a+4}{3} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
12a^{2}-11a-36=12\times \frac{\left(4a-9\right)\left(3a+4\right)}{12}
4 ni 3 marotabaga ko'paytirish.
12a^{2}-11a-36=\left(4a-9\right)\left(3a+4\right)
12 va 12 ichida eng katta umumiy 12 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}