Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

12x^{2}-88x+400=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-88\right)±\sqrt{\left(-88\right)^{2}-4\times 12\times 400}}{2\times 12}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 12 ni a, -88 ni b va 400 ni c bilan almashtiring.
x=\frac{-\left(-88\right)±\sqrt{7744-4\times 12\times 400}}{2\times 12}
-88 kvadratini chiqarish.
x=\frac{-\left(-88\right)±\sqrt{7744-48\times 400}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-88\right)±\sqrt{7744-19200}}{2\times 12}
-48 ni 400 marotabaga ko'paytirish.
x=\frac{-\left(-88\right)±\sqrt{-11456}}{2\times 12}
7744 ni -19200 ga qo'shish.
x=\frac{-\left(-88\right)±8\sqrt{179}i}{2\times 12}
-11456 ning kvadrat ildizini chiqarish.
x=\frac{88±8\sqrt{179}i}{2\times 12}
-88 ning teskarisi 88 ga teng.
x=\frac{88±8\sqrt{179}i}{24}
2 ni 12 marotabaga ko'paytirish.
x=\frac{88+8\sqrt{179}i}{24}
x=\frac{88±8\sqrt{179}i}{24} tenglamasini yeching, bunda ± musbat. 88 ni 8i\sqrt{179} ga qo'shish.
x=\frac{11+\sqrt{179}i}{3}
88+8i\sqrt{179} ni 24 ga bo'lish.
x=\frac{-8\sqrt{179}i+88}{24}
x=\frac{88±8\sqrt{179}i}{24} tenglamasini yeching, bunda ± manfiy. 88 dan 8i\sqrt{179} ni ayirish.
x=\frac{-\sqrt{179}i+11}{3}
88-8i\sqrt{179} ni 24 ga bo'lish.
x=\frac{11+\sqrt{179}i}{3} x=\frac{-\sqrt{179}i+11}{3}
Tenglama yechildi.
12x^{2}-88x+400=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
12x^{2}-88x+400-400=-400
Tenglamaning ikkala tarafidan 400 ni ayirish.
12x^{2}-88x=-400
O‘zidan 400 ayirilsa 0 qoladi.
\frac{12x^{2}-88x}{12}=-\frac{400}{12}
Ikki tarafini 12 ga bo‘ling.
x^{2}+\left(-\frac{88}{12}\right)x=-\frac{400}{12}
12 ga bo'lish 12 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{22}{3}x=-\frac{400}{12}
\frac{-88}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{22}{3}x=-\frac{100}{3}
\frac{-400}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{22}{3}x+\left(-\frac{11}{3}\right)^{2}=-\frac{100}{3}+\left(-\frac{11}{3}\right)^{2}
-\frac{22}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{3} olish uchun. Keyin, -\frac{11}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{22}{3}x+\frac{121}{9}=-\frac{100}{3}+\frac{121}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{3} kvadratini chiqarish.
x^{2}-\frac{22}{3}x+\frac{121}{9}=-\frac{179}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{100}{3} ni \frac{121}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{11}{3}\right)^{2}=-\frac{179}{9}
x^{2}-\frac{22}{3}x+\frac{121}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{3}\right)^{2}}=\sqrt{-\frac{179}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{3}=\frac{\sqrt{179}i}{3} x-\frac{11}{3}=-\frac{\sqrt{179}i}{3}
Qisqartirish.
x=\frac{11+\sqrt{179}i}{3} x=\frac{-\sqrt{179}i+11}{3}
\frac{11}{3} ni tenglamaning ikkala tarafiga qo'shish.