x uchun yechish
x = \frac{10}{3} = 3\frac{1}{3} \approx 3,333333333
x=10
Grafik
Baham ko'rish
Klipbordga nusxa olish
12x^{2}-160x+400=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-160\right)±\sqrt{\left(-160\right)^{2}-4\times 12\times 400}}{2\times 12}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 12 ni a, -160 ni b va 400 ni c bilan almashtiring.
x=\frac{-\left(-160\right)±\sqrt{25600-4\times 12\times 400}}{2\times 12}
-160 kvadratini chiqarish.
x=\frac{-\left(-160\right)±\sqrt{25600-48\times 400}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-160\right)±\sqrt{25600-19200}}{2\times 12}
-48 ni 400 marotabaga ko'paytirish.
x=\frac{-\left(-160\right)±\sqrt{6400}}{2\times 12}
25600 ni -19200 ga qo'shish.
x=\frac{-\left(-160\right)±80}{2\times 12}
6400 ning kvadrat ildizini chiqarish.
x=\frac{160±80}{2\times 12}
-160 ning teskarisi 160 ga teng.
x=\frac{160±80}{24}
2 ni 12 marotabaga ko'paytirish.
x=\frac{240}{24}
x=\frac{160±80}{24} tenglamasini yeching, bunda ± musbat. 160 ni 80 ga qo'shish.
x=10
240 ni 24 ga bo'lish.
x=\frac{80}{24}
x=\frac{160±80}{24} tenglamasini yeching, bunda ± manfiy. 160 dan 80 ni ayirish.
x=\frac{10}{3}
\frac{80}{24} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=10 x=\frac{10}{3}
Tenglama yechildi.
12x^{2}-160x+400=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
12x^{2}-160x+400-400=-400
Tenglamaning ikkala tarafidan 400 ni ayirish.
12x^{2}-160x=-400
O‘zidan 400 ayirilsa 0 qoladi.
\frac{12x^{2}-160x}{12}=-\frac{400}{12}
Ikki tarafini 12 ga bo‘ling.
x^{2}+\left(-\frac{160}{12}\right)x=-\frac{400}{12}
12 ga bo'lish 12 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{40}{3}x=-\frac{400}{12}
\frac{-160}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{40}{3}x=-\frac{100}{3}
\frac{-400}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{40}{3}x+\left(-\frac{20}{3}\right)^{2}=-\frac{100}{3}+\left(-\frac{20}{3}\right)^{2}
-\frac{40}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{20}{3} olish uchun. Keyin, -\frac{20}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{40}{3}x+\frac{400}{9}=-\frac{100}{3}+\frac{400}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{20}{3} kvadratini chiqarish.
x^{2}-\frac{40}{3}x+\frac{400}{9}=\frac{100}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{100}{3} ni \frac{400}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{20}{3}\right)^{2}=\frac{100}{9}
x^{2}-\frac{40}{3}x+\frac{400}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{20}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{20}{3}=\frac{10}{3} x-\frac{20}{3}=-\frac{10}{3}
Qisqartirish.
x=10 x=\frac{10}{3}
\frac{20}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}