Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

12x^{2}-144x+9>0
2 daraja ko‘rsatkichini 12 ga hisoblang va 144 ni qiymatni oling.
12x^{2}-144x+9=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 12\times 9}}{2\times 12}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 12 ni, b uchun -144 ni va c uchun 9 ni ayiring.
x=\frac{144±12\sqrt{141}}{24}
Hisoblarni amalga oshiring.
x=\frac{\sqrt{141}}{2}+6 x=-\frac{\sqrt{141}}{2}+6
x=\frac{144±12\sqrt{141}}{24} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
12\left(x-\left(\frac{\sqrt{141}}{2}+6\right)\right)\left(x-\left(-\frac{\sqrt{141}}{2}+6\right)\right)>0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-\left(\frac{\sqrt{141}}{2}+6\right)<0 x-\left(-\frac{\sqrt{141}}{2}+6\right)<0
Koʻpaytma musbat boʻlishi uchun x-\left(\frac{\sqrt{141}}{2}+6\right) va x-\left(-\frac{\sqrt{141}}{2}+6\right) ikkalasi yo manfiy, yo musbat boʻlishi kerak. x-\left(\frac{\sqrt{141}}{2}+6\right) va x-\left(-\frac{\sqrt{141}}{2}+6\right) ikkalasi manfiy boʻlganda, yechimini toping.
x<-\frac{\sqrt{141}}{2}+6
Ikkala tengsizlikning mos yechimi – x<-\frac{\sqrt{141}}{2}+6.
x-\left(-\frac{\sqrt{141}}{2}+6\right)>0 x-\left(\frac{\sqrt{141}}{2}+6\right)>0
x-\left(\frac{\sqrt{141}}{2}+6\right) va x-\left(-\frac{\sqrt{141}}{2}+6\right) ikkalasi musbat boʻlganda, yechimini toping.
x>\frac{\sqrt{141}}{2}+6
Ikkala tengsizlikning mos yechimi – x>\frac{\sqrt{141}}{2}+6.
x<-\frac{\sqrt{141}}{2}+6\text{; }x>\frac{\sqrt{141}}{2}+6
Oxirgi yechim olingan yechimlarning birlashmasidir.