Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

12x^{2}+25x-45=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-25±\sqrt{25^{2}-4\times 12\left(-45\right)}}{2\times 12}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 12 ni a, 25 ni b va -45 ni c bilan almashtiring.
x=\frac{-25±\sqrt{625-4\times 12\left(-45\right)}}{2\times 12}
25 kvadratini chiqarish.
x=\frac{-25±\sqrt{625-48\left(-45\right)}}{2\times 12}
-4 ni 12 marotabaga ko'paytirish.
x=\frac{-25±\sqrt{625+2160}}{2\times 12}
-48 ni -45 marotabaga ko'paytirish.
x=\frac{-25±\sqrt{2785}}{2\times 12}
625 ni 2160 ga qo'shish.
x=\frac{-25±\sqrt{2785}}{24}
2 ni 12 marotabaga ko'paytirish.
x=\frac{\sqrt{2785}-25}{24}
x=\frac{-25±\sqrt{2785}}{24} tenglamasini yeching, bunda ± musbat. -25 ni \sqrt{2785} ga qo'shish.
x=\frac{-\sqrt{2785}-25}{24}
x=\frac{-25±\sqrt{2785}}{24} tenglamasini yeching, bunda ± manfiy. -25 dan \sqrt{2785} ni ayirish.
x=\frac{\sqrt{2785}-25}{24} x=\frac{-\sqrt{2785}-25}{24}
Tenglama yechildi.
12x^{2}+25x-45=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
12x^{2}+25x-45-\left(-45\right)=-\left(-45\right)
45 ni tenglamaning ikkala tarafiga qo'shish.
12x^{2}+25x=-\left(-45\right)
O‘zidan -45 ayirilsa 0 qoladi.
12x^{2}+25x=45
0 dan -45 ni ayirish.
\frac{12x^{2}+25x}{12}=\frac{45}{12}
Ikki tarafini 12 ga bo‘ling.
x^{2}+\frac{25}{12}x=\frac{45}{12}
12 ga bo'lish 12 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{25}{12}x=\frac{15}{4}
\frac{45}{12} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{25}{12}x+\left(\frac{25}{24}\right)^{2}=\frac{15}{4}+\left(\frac{25}{24}\right)^{2}
\frac{25}{12} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{25}{24} olish uchun. Keyin, \frac{25}{24} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{15}{4}+\frac{625}{576}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{25}{24} kvadratini chiqarish.
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{2785}{576}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{15}{4} ni \frac{625}{576} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{25}{24}\right)^{2}=\frac{2785}{576}
x^{2}+\frac{25}{12}x+\frac{625}{576} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{25}{24}\right)^{2}}=\sqrt{\frac{2785}{576}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{25}{24}=\frac{\sqrt{2785}}{24} x+\frac{25}{24}=-\frac{\sqrt{2785}}{24}
Qisqartirish.
x=\frac{\sqrt{2785}-25}{24} x=\frac{-\sqrt{2785}-25}{24}
Tenglamaning ikkala tarafidan \frac{25}{24} ni ayirish.