x uchun yechish
x=6\sqrt{6}\approx 14,696938457
Grafik
Baham ko'rish
Klipbordga nusxa olish
12\sqrt{2}=\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}x
\frac{2}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
12\sqrt{2}=\frac{2\sqrt{3}}{3}x
\sqrt{3} kvadrati – 3.
12\sqrt{2}=\frac{2\sqrt{3}x}{3}
\frac{2\sqrt{3}}{3}x ni yagona kasrga aylantiring.
\frac{2\sqrt{3}x}{3}=12\sqrt{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2\sqrt{3}x=36\sqrt{2}
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
\frac{2\sqrt{3}x}{2\sqrt{3}}=\frac{36\sqrt{2}}{2\sqrt{3}}
Ikki tarafini 2\sqrt{3} ga bo‘ling.
x=\frac{36\sqrt{2}}{2\sqrt{3}}
2\sqrt{3} ga bo'lish 2\sqrt{3} ga ko'paytirishni bekor qiladi.
x=6\sqrt{6}
36\sqrt{2} ni 2\sqrt{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}