Baholash
\frac{7\sqrt{3}}{6}\approx 2,020725942
Baham ko'rish
Klipbordga nusxa olish
\frac{12\times \frac{\sqrt{1}}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{\frac{1}{6}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{6}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{12\times \frac{1}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
1 ning kvadrat ildizini hisoblab, 1 natijaga ega bo‘ling.
\frac{12\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\frac{1}{\sqrt{6}} maxrajini \sqrt{6} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{12\times \frac{\sqrt{6}}{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{6} kvadrati – 6.
\frac{2\sqrt{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
12 va 6 ichida eng katta umumiy 6 faktorini bekor qiling.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{\sqrt{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{\frac{7}{12}} boʻlinmasining kvadrat ildizini \frac{\sqrt{7}}{\sqrt{12}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{2\sqrt{3}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Faktor: 12=2^{2}\times 3. \sqrt{2^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\frac{\sqrt{7}}{2\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{3} kvadrati – 3.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{7} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{20+1}{2}}
20 hosil qilish uchun 10 va 2 ni ko'paytirish.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{21}{2}}
21 olish uchun 20 va 1'ni qo'shing.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}}{\sqrt{2}}
\sqrt{\frac{21}{2}} boʻlinmasining kvadrat ildizini \frac{\sqrt{21}}{\sqrt{2}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
\frac{\sqrt{21}}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{2}
\sqrt{2} kvadrati – 2.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
\sqrt{21} va \sqrt{2} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{2\sqrt{6}\sqrt{21}}{3\times 6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{2\sqrt{6}}{3} ni \frac{\sqrt{21}}{6} ga ko‘paytiring.
\frac{\sqrt{6}\sqrt{21}}{3\times 3}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2}\times \frac{\sqrt{42}}{2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{\sqrt{6}\sqrt{21}}{3\times 3} ni \frac{1}{2} ga ko‘paytiring.
\frac{\sqrt{6}\sqrt{21}\sqrt{42}}{3\times 3\times 2\times 2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2} ni \frac{\sqrt{42}}{2} ga ko‘paytiring.
\frac{\sqrt{6}\sqrt{21}\sqrt{6}\sqrt{7}}{3\times 3\times 2\times 2}
Faktor: 42=6\times 7. \sqrt{6\times 7} koʻpaytmasining kvadrat ildizini \sqrt{6}\sqrt{7} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{6\sqrt{21}\sqrt{7}}{3\times 3\times 2\times 2}
6 hosil qilish uchun \sqrt{6} va \sqrt{6} ni ko'paytirish.
\frac{6\sqrt{7}\sqrt{3}\sqrt{7}}{3\times 3\times 2\times 2}
Faktor: 21=7\times 3. \sqrt{7\times 3} koʻpaytmasining kvadrat ildizini \sqrt{7}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{6\times 7\sqrt{3}}{3\times 3\times 2\times 2}
7 hosil qilish uchun \sqrt{7} va \sqrt{7} ni ko'paytirish.
\frac{42\sqrt{3}}{3\times 3\times 2\times 2}
42 hosil qilish uchun 6 va 7 ni ko'paytirish.
\frac{42\sqrt{3}}{9\times 2\times 2}
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
\frac{42\sqrt{3}}{18\times 2}
18 hosil qilish uchun 9 va 2 ni ko'paytirish.
\frac{42\sqrt{3}}{36}
36 hosil qilish uchun 18 va 2 ni ko'paytirish.
\frac{7}{6}\sqrt{3}
\frac{7}{6}\sqrt{3} ni olish uchun 42\sqrt{3} ni 36 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}