d uchun yechish
d=-\frac{9x^{2}+6x-11}{\left(1-3x\right)^{2}}
x\neq \frac{1}{3}
x uchun yechish (complex solution)
\left\{\begin{matrix}x=-\frac{-d+2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{; }x=-\frac{-d-2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{, }&d\neq -1\\x=1\text{, }&d=-1\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=-\frac{-d+2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{; }x=-\frac{-d-2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{, }&d\neq -1\text{ and }d\geq -\frac{3}{2}\\x=1\text{, }&d=-1\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
12=\left(1-3x\right)^{2}d+\left(1+3x\right)\left(1+3x\right)
\left(1-3x\right)^{2} hosil qilish uchun 1-3x va 1-3x ni ko'paytirish.
12=\left(1-3x\right)^{2}d+\left(1+3x\right)^{2}
\left(1+3x\right)^{2} hosil qilish uchun 1+3x va 1+3x ni ko'paytirish.
12=\left(1-6x+9x^{2}\right)d+\left(1+3x\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-3x\right)^{2} kengaytirilishi uchun ishlating.
12=d-6xd+9x^{2}d+\left(1+3x\right)^{2}
1-6x+9x^{2} ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12=d-6xd+9x^{2}d+1+6x+9x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+3x\right)^{2} kengaytirilishi uchun ishlating.
d-6xd+9x^{2}d+1+6x+9x^{2}=12
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
d-6xd+9x^{2}d+6x+9x^{2}=12-1
Ikkala tarafdan 1 ni ayirish.
d-6xd+9x^{2}d+6x+9x^{2}=11
11 olish uchun 12 dan 1 ni ayirish.
d-6xd+9x^{2}d+9x^{2}=11-6x
Ikkala tarafdan 6x ni ayirish.
d-6xd+9x^{2}d=11-6x-9x^{2}
Ikkala tarafdan 9x^{2} ni ayirish.
\left(1-6x+9x^{2}\right)d=11-6x-9x^{2}
d'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(9x^{2}-6x+1\right)d=11-6x-9x^{2}
Tenglama standart shaklda.
\frac{\left(9x^{2}-6x+1\right)d}{9x^{2}-6x+1}=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Ikki tarafini 1-6x+9x^{2} ga bo‘ling.
d=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
1-6x+9x^{2} ga bo'lish 1-6x+9x^{2} ga ko'paytirishni bekor qiladi.
d=\frac{11-6x-9x^{2}}{\left(3x-1\right)^{2}}
11-6x-9x^{2} ni 1-6x+9x^{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}